Research Article
BibTex RIS Cite
Year 2025, Volume: 46 Issue: 2, 319 - 328, 30.06.2025
https://doi.org/10.17776/csj.1646890

Abstract

References

  • [1] Hazarika N., Acne Vulgaris: New Evidence in Pathogenesis and Future Modalities of Treatment, Journal of dermatological treatment, 32(3) (2021) 277-285.
  • [2] Yoham A.L., Casadesus D., Tretinoin, In StatPearls [Internet], StatPearls Publishing: Tampa, FL, USA, (2023).
  • [3] Schmidt N., Eugene H. G., Tretinoin: a Review of Its Anti-inflammatory Properties in the Treatment of Acne, The Journal of Clinical and Aesthetic Dermatology, 4(11) (2011) 22-29.
  • [4] Sabouri M., Samadi A., Nasrollahi S.A., Farboud E.S., Mirrahimi B., Hassanzadeh H., Kashani M.N., Dinarvand R., Firooz A., Tretinoin Loaded Nanoemulsion for Acne Vulgaris: Fabrication, Physicochemical and Clinical Efficacy Assessments, Skin Pharmacology and Physiology, 31 (6) (2018) 316-323.
  • [5] Thielitz A., Abdel‐Naser M. B., Fluhr J. W., Zouboulis C. C., Gollnick H., Topical Retinoids in Acne–an Evidence‐based Overview, JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 6(12) (2008) 1023-1031.
  • [6] Amidouche D., Montassier P., Poelman M. C., Duchêne, D., Evaluation by Laser Doppler Velocimetry of The Attenuation of Tretinoin Induced Skin Irritation by β-cyclodextrin Complexation, International Journal of Pharmaceutics, 111(2) (1994) 111-116.
  • [7] Naseri N., Valizadeh H., Zakeri-Milani P., Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application, Advanced Pharmaceutical Bulletin, 5(3) (2015) 305.
  • [8] Falcocchio S., Ruiz C., Pastor F. J., Saso L., Diaz P., Propionibacterium Acnes GehA Lipase, an Enzyme Involved in Acne Development, can be Successfully Inhibited by Defined Natural Substances, Journal of Molecular Catalysis B: Enzymatic, 40 (3-4) (2006) 132-137.
  • [9] Ghadamgahi M., Ajloo D., Molecular Dynamic Insight into the Ethanol Effect on Tretinoin Drug Delivery Through Carbon Nanotubes, Journal of Nanostructure in Chemistry, 4 (2014) 1-11.
  • [10] Chen Q., Wang Q., Liu Y. C., Wu T., Kang Y., Moore J. D., Gubbins K. E., Energetics Investigation on Encapsulation of Protein/Peptide Drugs in Carbon Nanotubes, The Journal of Chemical Physics, 131 (1) (2009).
  • [11] Bianco A., Kostarelos K., Prato M., Applications of Carbon Nanotubes in Drug Delivery, Current Opinion in Chemical Biology, 9 (6) (2005) 674-679.
  • [12] Hariharan P. C., Pople J. A., The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies, Theoretica Chimica Ccta, 28(3) (1973) 213-222.
  • [13] Sayiner H. S., Kandemirli F., Dalgic S. S., Monajjemi M., Mollaamin F., Carbazochrome Carbon Nanotube as Drug Delivery Nanocarrier for Anti-bleeding Drug: Quantum Chemical Study, Journal of Molecular Modeling, 28 (1) (2022) 11.
  • [14] Al-Sawaff Z. H., Dalgic S. S., Kandemirli F., Monajjemi M., Mollaamin F., DFT Study Adsorption of Hydroxychloroquine for Treatment COVID-19 by SiC Nanotube and Al, Si Doping on Carbon Nanotube Surface: A Drug Delivery Simulation, Russian Journal of Physical Chemistry A, 96 (13) (2022) 2953-2966.
  • [15] Dalgic S. S., Al-Sawaff Z. H., Dalgic S., Kandemirli, F., A Comparative DFT Study on Al-and Si-doped Single-Wall Carbon Nanotubes (SWCNTs) for Ribavirin Drug Sensing and Detection, Materials Science in Semiconductor Processing, 158 (2023) 107360.
  • [16] Al-Sawaff Z. H., Dalgic S. S., Kandemirli F., Theoretical study of the adsorption of BMSF-BENZ drug for osteoporosis disease treatment on Al-doped carbon nanotubes (Al-CNT) as a drug vehicle, European Journal of Chemistry , 12 (3) (2021) 314-322.
  • [17] Dalgic Senturk S, Burucu DK, Dalgic S, Kandemirli F., A comparative DFT study on the interaction of Aldara drug molecule with SiC and Si-carbon nanotubes, Journal of Applied Physics, 137 (3) (2025) 135104.
  • [18] Tomasi J., Mennucci B., Cammi R., Quantum Mechanical Continuum Solvation Models, Chemical Reviews, 105 (8) (2005) 2999-3094.
  • [19] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E. Et al., Gaussian 09, Gaussian Inc., Wallingford, (2013).
  • [20] Bader R.F.W., Atoms in molecules, Accounts of Chemical Research., 18 (1985) 9–15.
  • [21] Lu T., Chen F., Multiwfn: a multifunctional wave function analyser, Journal of Computational Chemistry, 33 (2012) 580–592.

Potential Application of Al Doped Carbon Nanotubes for Tretinoin: a Theoretical Study

Year 2025, Volume: 46 Issue: 2, 319 - 328, 30.06.2025
https://doi.org/10.17776/csj.1646890

Abstract

In this research, a Density Functional Theory (DFT) calculation was performed to study the interaction of Tretinoin drug (TRE) known as a valuable medication in treating mild, moderate, and severe acne that can be used topically or systemically into Al-doped carbon nanotube (Al-CNT) with the use of M062X/6-31G(d) level of theory in the gas, n-octanol and water environment. The Quantum Theory of Atoms in Molecules (QTAIM) study was performed for complexes in gas, n-octanol and water environments. The contributions of atomic orbitals to the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) for TRE and its complex with Al-CNT in gas, n-octanol and water environment were found using the multifunctional wavefunction analyzer program (Multiwfn). Surface analysis, global minimum and global maximum of TRE and its complexity in different environments were performed. The adsorption, interaction, and deformation energies of TRE drug on Al-CNT have been calculated, along with the changes in the enthalpy and Gibss-free energy in different environments. Calculations indicate that Al-CNT are promising devices for drug carriers for TRE drug due to the more negative adsorption energies. The Gibbs free energy for adsorption of TRE on Al-CNTs is also more favorable in water.

References

  • [1] Hazarika N., Acne Vulgaris: New Evidence in Pathogenesis and Future Modalities of Treatment, Journal of dermatological treatment, 32(3) (2021) 277-285.
  • [2] Yoham A.L., Casadesus D., Tretinoin, In StatPearls [Internet], StatPearls Publishing: Tampa, FL, USA, (2023).
  • [3] Schmidt N., Eugene H. G., Tretinoin: a Review of Its Anti-inflammatory Properties in the Treatment of Acne, The Journal of Clinical and Aesthetic Dermatology, 4(11) (2011) 22-29.
  • [4] Sabouri M., Samadi A., Nasrollahi S.A., Farboud E.S., Mirrahimi B., Hassanzadeh H., Kashani M.N., Dinarvand R., Firooz A., Tretinoin Loaded Nanoemulsion for Acne Vulgaris: Fabrication, Physicochemical and Clinical Efficacy Assessments, Skin Pharmacology and Physiology, 31 (6) (2018) 316-323.
  • [5] Thielitz A., Abdel‐Naser M. B., Fluhr J. W., Zouboulis C. C., Gollnick H., Topical Retinoids in Acne–an Evidence‐based Overview, JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 6(12) (2008) 1023-1031.
  • [6] Amidouche D., Montassier P., Poelman M. C., Duchêne, D., Evaluation by Laser Doppler Velocimetry of The Attenuation of Tretinoin Induced Skin Irritation by β-cyclodextrin Complexation, International Journal of Pharmaceutics, 111(2) (1994) 111-116.
  • [7] Naseri N., Valizadeh H., Zakeri-Milani P., Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application, Advanced Pharmaceutical Bulletin, 5(3) (2015) 305.
  • [8] Falcocchio S., Ruiz C., Pastor F. J., Saso L., Diaz P., Propionibacterium Acnes GehA Lipase, an Enzyme Involved in Acne Development, can be Successfully Inhibited by Defined Natural Substances, Journal of Molecular Catalysis B: Enzymatic, 40 (3-4) (2006) 132-137.
  • [9] Ghadamgahi M., Ajloo D., Molecular Dynamic Insight into the Ethanol Effect on Tretinoin Drug Delivery Through Carbon Nanotubes, Journal of Nanostructure in Chemistry, 4 (2014) 1-11.
  • [10] Chen Q., Wang Q., Liu Y. C., Wu T., Kang Y., Moore J. D., Gubbins K. E., Energetics Investigation on Encapsulation of Protein/Peptide Drugs in Carbon Nanotubes, The Journal of Chemical Physics, 131 (1) (2009).
  • [11] Bianco A., Kostarelos K., Prato M., Applications of Carbon Nanotubes in Drug Delivery, Current Opinion in Chemical Biology, 9 (6) (2005) 674-679.
  • [12] Hariharan P. C., Pople J. A., The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies, Theoretica Chimica Ccta, 28(3) (1973) 213-222.
  • [13] Sayiner H. S., Kandemirli F., Dalgic S. S., Monajjemi M., Mollaamin F., Carbazochrome Carbon Nanotube as Drug Delivery Nanocarrier for Anti-bleeding Drug: Quantum Chemical Study, Journal of Molecular Modeling, 28 (1) (2022) 11.
  • [14] Al-Sawaff Z. H., Dalgic S. S., Kandemirli F., Monajjemi M., Mollaamin F., DFT Study Adsorption of Hydroxychloroquine for Treatment COVID-19 by SiC Nanotube and Al, Si Doping on Carbon Nanotube Surface: A Drug Delivery Simulation, Russian Journal of Physical Chemistry A, 96 (13) (2022) 2953-2966.
  • [15] Dalgic S. S., Al-Sawaff Z. H., Dalgic S., Kandemirli, F., A Comparative DFT Study on Al-and Si-doped Single-Wall Carbon Nanotubes (SWCNTs) for Ribavirin Drug Sensing and Detection, Materials Science in Semiconductor Processing, 158 (2023) 107360.
  • [16] Al-Sawaff Z. H., Dalgic S. S., Kandemirli F., Theoretical study of the adsorption of BMSF-BENZ drug for osteoporosis disease treatment on Al-doped carbon nanotubes (Al-CNT) as a drug vehicle, European Journal of Chemistry , 12 (3) (2021) 314-322.
  • [17] Dalgic Senturk S, Burucu DK, Dalgic S, Kandemirli F., A comparative DFT study on the interaction of Aldara drug molecule with SiC and Si-carbon nanotubes, Journal of Applied Physics, 137 (3) (2025) 135104.
  • [18] Tomasi J., Mennucci B., Cammi R., Quantum Mechanical Continuum Solvation Models, Chemical Reviews, 105 (8) (2005) 2999-3094.
  • [19] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E. Et al., Gaussian 09, Gaussian Inc., Wallingford, (2013).
  • [20] Bader R.F.W., Atoms in molecules, Accounts of Chemical Research., 18 (1985) 9–15.
  • [21] Lu T., Chen F., Multiwfn: a multifunctional wave function analyser, Journal of Computational Chemistry, 33 (2012) 580–592.
There are 21 citations in total.

Details

Primary Language English
Subjects Theoretical and Computational Chemistry (Other)
Journal Section Natural Sciences
Authors

Fatma Genç 0000-0002-5304-5347

Serap Senturk Dalgıc 0000-0003-2541-9214

Fatma Kandemirli 0000-0001-6097-2184

Publication Date June 30, 2025
Submission Date February 28, 2025
Acceptance Date April 17, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Genç, F., Senturk Dalgıc, S., & Kandemirli, F. (2025). Potential Application of Al Doped Carbon Nanotubes for Tretinoin: a Theoretical Study. Cumhuriyet Science Journal, 46(2), 319-328. https://doi.org/10.17776/csj.1646890