Research Article
BibTex RIS Cite

Bruggemann Teorisi Temelli Metal ve Polimer Melez Izgaralarının Optik Polarizasyon Tepkisi

Year 2025, Volume: 46 Issue: 2, 396 - 404, 30.06.2025
https://doi.org/10.17776/csj.1626055

Abstract

Mevcut literatürde ızgara tasarımlarının farklı metaller ve polimerler içeren kompozisyonları yeterince ele alınmamıştır. Çalışmamız, değişen malzeme kompozisyonlarının polarizasyon özellikleri üzerindeki etkisini araştırarak bu boşluğu doldurmayı amaçlamaktadır. Bu sorunu ele almak için, Bruggeman Teorisi'ni kullanarak altın, gümüş ve poli(dimetil siloksan) (PDMS) karışımlarının kırılma indisleri hesaplanmış, bu melez malzemelerden yapılan ızgaraların optik geçirgenliği ve yansıması simüle edilmiştir. Analizimiz, çeşitli malzeme oranları için farklı dalga boylarında polarizasyon oranında belirgin tepe noktaları ortaya koymuştur. Özellikle, simülasyon sonuçlarımız, polarizasyon oranının 450-1000 nm aralığında ayarlanması potansiyelini göstermektedir. Dahası, simülasyon ortamında hem 0 hem de 1 polarizasyon oranlarına ulaşılabildiği gösterilmiştir. Bu sonuçlar, belirli dalga boylarını hedefleyen optik filtreler ve polarizörler tasarlanmasına olanak sağlayacaktır.

Project Number

120C124

References

  • [1] Palmer C., Loewen E., Diffraction grating handbook, 6th ed. New York (2005) 12-155.
  • [2] Loewen E., Popov E., Diffraction gratings and applications, 1st ed. New York (2018)
  • [3] Arkhipkin V. G., Myslivets S. A., One- and two-dimensional Raman-induced diffraction gratings in atomic media, Phys Rev A (Coll Park), 98 (1) (2018) 013838.
  • [4] Knop K., Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves, JOSA 68 (9) (1978) 1206-1210.
  • [5] Zhang X., Liu H., Tian J., Song Y., Wang L., Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings, Nano Lett, 8 (9) (2008) 2653-2658
  • [6] Zhao L., Electromagnetically induced polarization grating, Scientific Reports, 8 (1) (2018) 1-10.
  • [7] Cincotti G., Polarization Gratings: Design and Applications, IEEE J Quantum Electron, 39 (12) (2003) 1645-1652.
  • [8] Wu J., Zhou C., Cao H., Hu A., Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure, Opt Commun, 309 (2013) 57-63.
  • [9] Ouyang M., Cao Y., Gao H., Shi J., Zhou J., Liu D., Analysis on polarization dependence of Fraunhofer diffraction by metallic grating with short period, Opt Laser Technol, 40 (1) (2008) 201-207.
  • [10] Sadov S. Yu., McGreer K. A., Polarization dependence of diffraction gratings that have total internal reflection facets, JOSA A 17 (9) (2000) 1590-1593.
  • [11] Schnabel B., Kley E.-B., and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng., 38, (2) (1999) 220-226.
  • [12] Xu Y., Xu Y., Wang Y., Yang Y., Yang S., Li L., Xiang R., Xiang R., Liu J., Liu J, Stretchable structural colors with polarization dependence using lithium niobate metasurfaces, Optics Express, 32(4)(2024) 6776-6790.
  • [13] Chen Y., Ai B., Wong Z. J., Soft optical metamaterials, Nano Convergence, 7(1)(2020) 18.
  • [14] Effah E., Nettey-Oppong E. E., Ali A., Byun K. M., Choi S. H., Tunable Metasurfaces Based on Mechanically Deformable Polymeric Substrates, Photonics, 10(2)(2023) 119.
  • [15] Dolan J. A., Saba M., Dehmel R., Gunkel I., Gu Y., Wiesner U., Hess O., Wilkinson T. D., Baumberg J., Steiner U., Wilts B. D., Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples, ACS Photonics, 3(10)(2016) 1888-1896.
  • [16] Liu Z., Xu Y., Ji C., Chen S., Li X., Zhang X., Yao Y., Li J., Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces, Advanced Materials, 32(8)(2020) 1907077.
  • [17] Kumagai H.,Fujie T.,Sawada K.,Takahashi K, Stretchable and High-Adhesive Plasmonic Metasheet Using Al Subwavelength Grating Embedded in an Elastomer Nanosheet, Adv. Optical Mater.8 (15)(2020) 1902074.
  • [18] Li P., Gao K., Ma R., Pan K., Li D., Liu F., Li P., Gan X., Zhao J., Wen D., Stretchable plasmonic metasurfaces for deformation monitoring, Nanophotonics, 13(24)(2024) 4483-4490.
  • [19] Kim J., Kim H., Kim B., Chang T., Lim J., Jin H., Mun J., Choi Y., Chung K., Shin J., Fan S., Kim S., Highly tunable refractive index visible-light metasurface from block copolymer self-assembly, Nature Communications, 7(1) (2016) 1-9.
  • [20] Yoo D., Johnson T. W., Cherukulappurath S., Norris D. J., Oh S., Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates, ACS Nano, 9(11)(2015) 10647-10654.
  • [21] Bruggeman D. A. G, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, AnP, 416 (7) (1935) 636-664.
  • [22] Gaponenko S. V., Nanoplasmonics I: metal nanoparticles. In: Gaponenko S. V., Introduction to Nanophotonics. 1st ed. New York: Cambridge University Press (2010) 166-198.
  • [23] Koledintseva M. Y., DuBroff R. E., Schwartz R. W., A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies, Progress in Electromagnetics Research, 63 (2006) 223-242.
  • [24] Peña-Rodríguez O., Caro M., Olivares J., Perlado J. M., Rivera A., Caro A., Optical properties of Au-Ag alloys: An ellipsometric study, Optical Materials Express, 4(2)(2014) 403-410.
  • [25] An N., Zhuang B., Li M., Lu Y., Wang Z. G., Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems, J Phys Chem B, 119 (33) (2015) 10701-10709.
  • [26] Reis J. C. R., Lampreia I. M. S., Santos Â. F. S., Moita M. L. C. J., Douhéret G., Refractive Index of Liquid Mixtures: Theory and Experiment, ChemPhysChem, 11 (17) (2010) 3722-3733.

Optical Polarization Response of Hybrid Gratings Made of Metals and Polymers Based on Bruggeman Theory

Year 2025, Volume: 46 Issue: 2, 396 - 404, 30.06.2025
https://doi.org/10.17776/csj.1626055

Abstract

In the current state of the art of grating designs, compositions involving different metals and polymers have not been adequately addressed. Our study aims to fill this gap by investigating the influence of varying material compositions on polarization properties. To address this issue, we computed the refractive indices of mixtures of gold, silver, and poly(dimethyl siloxane) (PDMS) using the Bruggeman Theory, and simulated optical transmission and reflection of the gratings made of these hybrids. Our analysis revealed prominent peaks in the extinction coefficient at distinct wavelengths for various material ratios. Notably, our simulation results suggest the potential for fine-tuning the extinction coefficient within the range of 450-1000 nm. Furthermore, we demonstrate the attainment of polarization ratios of both 0 and 1 within the simulation environment. These outcomes offer the prospect of designing optical filters and polarizers targeted to specific wavelengths.

Project Number

120C124

References

  • [1] Palmer C., Loewen E., Diffraction grating handbook, 6th ed. New York (2005) 12-155.
  • [2] Loewen E., Popov E., Diffraction gratings and applications, 1st ed. New York (2018)
  • [3] Arkhipkin V. G., Myslivets S. A., One- and two-dimensional Raman-induced diffraction gratings in atomic media, Phys Rev A (Coll Park), 98 (1) (2018) 013838.
  • [4] Knop K., Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves, JOSA 68 (9) (1978) 1206-1210.
  • [5] Zhang X., Liu H., Tian J., Song Y., Wang L., Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings, Nano Lett, 8 (9) (2008) 2653-2658
  • [6] Zhao L., Electromagnetically induced polarization grating, Scientific Reports, 8 (1) (2018) 1-10.
  • [7] Cincotti G., Polarization Gratings: Design and Applications, IEEE J Quantum Electron, 39 (12) (2003) 1645-1652.
  • [8] Wu J., Zhou C., Cao H., Hu A., Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure, Opt Commun, 309 (2013) 57-63.
  • [9] Ouyang M., Cao Y., Gao H., Shi J., Zhou J., Liu D., Analysis on polarization dependence of Fraunhofer diffraction by metallic grating with short period, Opt Laser Technol, 40 (1) (2008) 201-207.
  • [10] Sadov S. Yu., McGreer K. A., Polarization dependence of diffraction gratings that have total internal reflection facets, JOSA A 17 (9) (2000) 1590-1593.
  • [11] Schnabel B., Kley E.-B., and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng., 38, (2) (1999) 220-226.
  • [12] Xu Y., Xu Y., Wang Y., Yang Y., Yang S., Li L., Xiang R., Xiang R., Liu J., Liu J, Stretchable structural colors with polarization dependence using lithium niobate metasurfaces, Optics Express, 32(4)(2024) 6776-6790.
  • [13] Chen Y., Ai B., Wong Z. J., Soft optical metamaterials, Nano Convergence, 7(1)(2020) 18.
  • [14] Effah E., Nettey-Oppong E. E., Ali A., Byun K. M., Choi S. H., Tunable Metasurfaces Based on Mechanically Deformable Polymeric Substrates, Photonics, 10(2)(2023) 119.
  • [15] Dolan J. A., Saba M., Dehmel R., Gunkel I., Gu Y., Wiesner U., Hess O., Wilkinson T. D., Baumberg J., Steiner U., Wilts B. D., Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples, ACS Photonics, 3(10)(2016) 1888-1896.
  • [16] Liu Z., Xu Y., Ji C., Chen S., Li X., Zhang X., Yao Y., Li J., Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces, Advanced Materials, 32(8)(2020) 1907077.
  • [17] Kumagai H.,Fujie T.,Sawada K.,Takahashi K, Stretchable and High-Adhesive Plasmonic Metasheet Using Al Subwavelength Grating Embedded in an Elastomer Nanosheet, Adv. Optical Mater.8 (15)(2020) 1902074.
  • [18] Li P., Gao K., Ma R., Pan K., Li D., Liu F., Li P., Gan X., Zhao J., Wen D., Stretchable plasmonic metasurfaces for deformation monitoring, Nanophotonics, 13(24)(2024) 4483-4490.
  • [19] Kim J., Kim H., Kim B., Chang T., Lim J., Jin H., Mun J., Choi Y., Chung K., Shin J., Fan S., Kim S., Highly tunable refractive index visible-light metasurface from block copolymer self-assembly, Nature Communications, 7(1) (2016) 1-9.
  • [20] Yoo D., Johnson T. W., Cherukulappurath S., Norris D. J., Oh S., Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates, ACS Nano, 9(11)(2015) 10647-10654.
  • [21] Bruggeman D. A. G, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, AnP, 416 (7) (1935) 636-664.
  • [22] Gaponenko S. V., Nanoplasmonics I: metal nanoparticles. In: Gaponenko S. V., Introduction to Nanophotonics. 1st ed. New York: Cambridge University Press (2010) 166-198.
  • [23] Koledintseva M. Y., DuBroff R. E., Schwartz R. W., A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies, Progress in Electromagnetics Research, 63 (2006) 223-242.
  • [24] Peña-Rodríguez O., Caro M., Olivares J., Perlado J. M., Rivera A., Caro A., Optical properties of Au-Ag alloys: An ellipsometric study, Optical Materials Express, 4(2)(2014) 403-410.
  • [25] An N., Zhuang B., Li M., Lu Y., Wang Z. G., Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems, J Phys Chem B, 119 (33) (2015) 10701-10709.
  • [26] Reis J. C. R., Lampreia I. M. S., Santos Â. F. S., Moita M. L. C. J., Douhéret G., Refractive Index of Liquid Mixtures: Theory and Experiment, ChemPhysChem, 11 (17) (2010) 3722-3733.
There are 26 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications, Classical and Physical Optics
Journal Section Natural Sciences
Authors

Talha Erdem 0000-0003-3905-376X

Emirhan Taze 0009-0007-4183-6954

Project Number 120C124
Publication Date June 30, 2025
Submission Date January 24, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Erdem, T., & Taze, E. (2025). Optical Polarization Response of Hybrid Gratings Made of Metals and Polymers Based on Bruggeman Theory. Cumhuriyet Science Journal, 46(2), 396-404. https://doi.org/10.17776/csj.1626055