Research Article
BibTex RIS Cite

The Effect of NKCC1 Inhibitor Azosemide on Emotional Behaviors and Hippocampal GABA Levels in a Rat Model of Post-traumatic Stress Disorder

Year 2025, Volume: 46 Issue: 2, 268 - 273, 30.06.2025
https://doi.org/10.17776/csj.1624998

Abstract

Post-traumatic stress disorder (PTSD) is an anxiety disorder that can occur immediately or years after exposure to a traumatic event. Despite extensive research, the etiology of PTSD is largely unknown, but it is thought that impaired GABAergic transmission may play a role in the disease process. Using a single prolonged stress (SPS) procedure, we aimed to determine the effect of azosemide, a sodium-potassium-chloride cotransporter (NKCC1) inhibitor, on anxiety and memory-related behaviors and hippocampal GABA level in rats. Behavioral tests were performed by open field test and passive avoidance test, while hippocampal GABA levels were determined by ELISA. We found that azosemide treatment partially improved emotional behavior and significantly improved memory performance in rats with PTSD, without affecting the decline in hippocampal GABA levels induced by a SPS exposure. These findings suggest that azosemide may offer partial therapeutic benefits for symptoms of PTSD, particularly cognitive deficits. However, they underscore the necessity for multimodal approaches to address the various neurobiological underpinnings of the disorder.

Ethical Statement

All procedures involving the animals were conducted with the approval of the Sivas Cumhuriyet University Animal Experiments Local Ethics Committee (Decision No: 65202830-050.04.04-72).

Supporting Institution

This study is funded by TUBITAK 2209-A Research Project Support Programme for Undergraduate Students

Project Number

1919B012305656

Thanks

We would like to thank the Sivas Cumhuriyet University, School of Medicine, CUTFAM Research Center, Sivas, Turkey, for providing the necessary facilities to conduct this study.

References

  • [1] Pai A., Suris AM., North CS, Posttraumatic Stress Disorder in the DSM-5: Controversy, Change, and Conceptual Considerations, Behav Sci., 7(1) (2017) 7.
  • [2] Schöner J., Heinz A., Endres M., Gertz K., Kronenberg G, Post-traumatic stress disorder and beyond: an overview of rodent stress models, J Cell Mol Med., 21(10) (2017) 2248-2256.
  • [3] Bryant RA, Post-traumatic stress disorder: a state-of-the-art review of evidence and challenges, World Psychiatry., 18(3) (2019) 259-269.
  • [4] Hitchcock C., Goodall B., Sharples O, Population Prevalence of the Posttraumatic Stress Disorder Subtype for Young Children in Nationwide Surveys of the British General Population and of Children in Care, J Am Acad Child Adolesc Psychiatry., 60(10) (2021) 1278-1287.
  • [5] Abdalla S.M., Ettman C.K., Rosenberg, SB, Post-traumatic stress disorder during the Covid-19 pandemic: a national, population-representative, longitudinal study of U.S. adults, npj Mental Health Res., 3 (2024) 20.
  • [6] Yehuda R., Hoge CW., McFarlane AC, Post-traumatic stress disorder, Nat Rev Dis Primers.,1 (2015) 15057
  • [7] Simeon D., Knutelska M., Yehuda R., Putnam F., Schmeidler J., Smith LM, Hypothalamic-pituitary-adrenal axis function in dissociative disorders, post-traumatic stress disorder, and healthy volunteers, Biol Psychiatry., 61(8) (2007) 966-973.
  • [8] Astill L., Sijbrandij M., Sinnerton R., Lewis C., Roberts N.P., Bisson JI, Pharmacological prevention and early treatment of post-traumatic stress disorder and acute stress disorder: a systematic review and meta-analysis., Transl Psychiatry., 9(1) (2019) 334.
  • [9] Löscher W., Kaila K, CNS pharmacology of NKCC1 inhibitors, Neuropharmacology., 205 (2022) 108910.
  • [10] Suh O.K., Kim S.H., Lee MG, Pharmacokinetics and pharmacodynamics of azosemide, Biopharm Drug Dispos., 24(7) (2003) 275-297.
  • [11] Kaila K., Price T.J., Payne J.A., Puskarjov M., Voipio J, Cation-chloride cotransporters in neuronal development, plasticity and disease, Nat Rev Neurosci,. 15(10) (2014) 637-654.
  • [12] Hampel P., Römermann K., MacAulay N., Löscher W, Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B, Sci Rep., 8(1) (2018) 9877.
  • [13] Muñoz A., Méndez P., DeFelipe J., Alvarez-Leefmans FJ, Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus, Epilepsia., 48(4) (2007) 663-673.
  • [14] Huang J., Xu F., Yang L, Involvement of the GABAergic system in PTSD and its therapeutic significance, Front Mol Neurosci., 20(16) (2023 ) 1158825.
  • [15] Souza R.R., Noble L.J., McIntyre CK, Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD, Front Pharmacol., 8 (2017) 615.
  • [16] Hampel P., Römermann K., Gailus B, Effects of the NKCC1 inhibitors bumetanide, azosemide, and torasemide alone or in combination with phenobarbital on seizure threshold in epileptic and nonepileptic mice, Neuropharmacology, 185 (2021) 108449.
  • [17] Filiz A.K., Gumus E., Karabulut S., Tastemur Y., Taskiran AS, Protective effects of lamotrigine and vitamin B12 on pentylenetetrazole-induced epileptogenesis in rats, Epilepsy Behav., 118 (2021) 107915.
  • [18] Sahin B., Karabulut S., Filiz AK, Galium aparine L. protects against acetaminophen-induced hepatotoxicity in rats, Chem Biol Interact., 366 (2022) 110119.
  • [19] Yulak F., Joha Z., Öztürk A., İnan D.Ş., Taşkıran AŞ, Enoxaparin Protects C6 Glioma Cells from Glutamate-Induced Cytotoxicity by Reducing Oxidative Stress and Apoptosis, Mol Neurobiol., 62(4) (2025) 4631-4640.
  • [20] Hui K.K., Chater T.E., Goda Y., Tanaka M, How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders, Front Mol Neurosci., 15 (2022) 893111.
  • [21] Whitaker A.M., Farooq M.A., Edwards S., Gilpin NW, Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats, Stress., 19(1) (2016) 69-77.
  • [22] Almeida F.B., Pinna G., Barros HMT, The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD, Int J Mol Sci., 22(11) (2021) 5495.
  • [23] Whitaker A.M., Gilpin N.W., Edwards S, Animal models of post-traumatic stress disorder and recent neurobiological insights, Behav Pharmacol. 25(56) (2014) 398-409.
  • [24] Acheson D.T., Gresack J.E., Risbrough VB, Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder, Neuropharmacology., 62(2) (2012) 674-685.
  • [25] Devignes Q., Ren B., Clancy KJ, Trauma-related intrusive memories and anterior hippocampus structural covariance: an ecological momentary assessment study in posttraumatic stress disorder, Transl Psychiatry, 14 (2024) 74.
  • [26] Postel C,. Mary A., Dayan J, Variations in response to trauma and hippocampal subfield changes, Neurobiol Stress., 15 (2021) 100346.
  • [27] Grigoryan GA, Neuroinflammation and Reconsolidation of Memory, Neurochem. J., 16 (2022) 109-120.
  • [28] Lee D.H., Lee J.Y., Hong DY, Neuroinflammation in Post-Traumatic Stress Disorder, Biomedicines., 10(5) (2022) 953.
  • [29] Gong Y., Wu M., Shen J, Inhibition of the NKCC1/NF-κB Signaling Pathway Decreases Inflammation and Improves Brain Edema and Nerve Cell Apoptosis in an SBI Rat Model, Front Mol Neurosci., 14 (2021) 641993.
  • [30] Kelmendi B., Adams T.G., Yarnell S., Southwick S., Abdallah C.G., Krystal JH, PTSD: from neurobiology to pharmacological treatments, Eur J Psychotraumatol., 7 (2016) 31858.
  • [31] Fang Q., Li Z., Huang GD, Traumatic Stress Produces Distinct Activations of GABAergic and Glutamatergic Neurons in Amygdala, Front Neurosci., 12 (2018) 387.

NKCC1 inhibitörü azosemid'in travma sonrası stres bozukluğu sıçan modelinde emosyonel davranış ve hipokampal GABA düzeyleri üzerindeki etkisi

Year 2025, Volume: 46 Issue: 2, 268 - 273, 30.06.2025
https://doi.org/10.17776/csj.1624998

Abstract

Travma sonrası stres bozukluğu (TSSB), travmatik bir olaya maruz kaldıktan hemen sonra veya yıllar sonra ortaya çıkabilen bir anksiyete bozukluğudur. Kapsamlı araştırmalara rağmen, TSSB'nin etiyolojisi büyük ölçüde bilinmemektedir, ancak bozulmuş GABAerjik iletiminin hastalık sürecinde rol oynayabileceği düşünülmektedir. Tek bir uzun süreli stres (SPS) prosedürü kullanarak, sodyum-potasyum-klorür ko-taşıyıcı (NKCC1) inhibitörü olan azaosemidin sıçanlarda anksiyete ve hafıza ile ilgili davranışlar ve hipokampal GABA düzeyi üzerindeki etkisini belirlemeyi amaçladık. Davranış testleri açık alan testi ve pasif kaçınma testi ile gerçekleştirildi, hipokampal GABA düzeyleri ise ELISA ile belirlendi. Azosemid tedavisinin TSSB'li sıçanlarda emosyonel davranışları kısmen iyileştirdiğini ve hafıza performansını önemli ölçüde iyileştirdiğini, ancak tek bir uzun süreli stres maruziyetinin neden olduğu hipokampal GABA düzeylerindeki düşüşü etkilemediğini bulduk. Bu bulgular, azosemidin özellikle bilişsel eksiklikler olmak üzere TSSB semptomları için kısmi terapötik faydalar sunabileceğini düşündürmektedir. Ancak, bozukluğun çeşitli nörobiyolojik temellerini ele almak için multimodal yaklaşımların gerekliliğini vurgulamaktadırlar.

Project Number

1919B012305656

References

  • [1] Pai A., Suris AM., North CS, Posttraumatic Stress Disorder in the DSM-5: Controversy, Change, and Conceptual Considerations, Behav Sci., 7(1) (2017) 7.
  • [2] Schöner J., Heinz A., Endres M., Gertz K., Kronenberg G, Post-traumatic stress disorder and beyond: an overview of rodent stress models, J Cell Mol Med., 21(10) (2017) 2248-2256.
  • [3] Bryant RA, Post-traumatic stress disorder: a state-of-the-art review of evidence and challenges, World Psychiatry., 18(3) (2019) 259-269.
  • [4] Hitchcock C., Goodall B., Sharples O, Population Prevalence of the Posttraumatic Stress Disorder Subtype for Young Children in Nationwide Surveys of the British General Population and of Children in Care, J Am Acad Child Adolesc Psychiatry., 60(10) (2021) 1278-1287.
  • [5] Abdalla S.M., Ettman C.K., Rosenberg, SB, Post-traumatic stress disorder during the Covid-19 pandemic: a national, population-representative, longitudinal study of U.S. adults, npj Mental Health Res., 3 (2024) 20.
  • [6] Yehuda R., Hoge CW., McFarlane AC, Post-traumatic stress disorder, Nat Rev Dis Primers.,1 (2015) 15057
  • [7] Simeon D., Knutelska M., Yehuda R., Putnam F., Schmeidler J., Smith LM, Hypothalamic-pituitary-adrenal axis function in dissociative disorders, post-traumatic stress disorder, and healthy volunteers, Biol Psychiatry., 61(8) (2007) 966-973.
  • [8] Astill L., Sijbrandij M., Sinnerton R., Lewis C., Roberts N.P., Bisson JI, Pharmacological prevention and early treatment of post-traumatic stress disorder and acute stress disorder: a systematic review and meta-analysis., Transl Psychiatry., 9(1) (2019) 334.
  • [9] Löscher W., Kaila K, CNS pharmacology of NKCC1 inhibitors, Neuropharmacology., 205 (2022) 108910.
  • [10] Suh O.K., Kim S.H., Lee MG, Pharmacokinetics and pharmacodynamics of azosemide, Biopharm Drug Dispos., 24(7) (2003) 275-297.
  • [11] Kaila K., Price T.J., Payne J.A., Puskarjov M., Voipio J, Cation-chloride cotransporters in neuronal development, plasticity and disease, Nat Rev Neurosci,. 15(10) (2014) 637-654.
  • [12] Hampel P., Römermann K., MacAulay N., Löscher W, Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B, Sci Rep., 8(1) (2018) 9877.
  • [13] Muñoz A., Méndez P., DeFelipe J., Alvarez-Leefmans FJ, Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus, Epilepsia., 48(4) (2007) 663-673.
  • [14] Huang J., Xu F., Yang L, Involvement of the GABAergic system in PTSD and its therapeutic significance, Front Mol Neurosci., 20(16) (2023 ) 1158825.
  • [15] Souza R.R., Noble L.J., McIntyre CK, Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD, Front Pharmacol., 8 (2017) 615.
  • [16] Hampel P., Römermann K., Gailus B, Effects of the NKCC1 inhibitors bumetanide, azosemide, and torasemide alone or in combination with phenobarbital on seizure threshold in epileptic and nonepileptic mice, Neuropharmacology, 185 (2021) 108449.
  • [17] Filiz A.K., Gumus E., Karabulut S., Tastemur Y., Taskiran AS, Protective effects of lamotrigine and vitamin B12 on pentylenetetrazole-induced epileptogenesis in rats, Epilepsy Behav., 118 (2021) 107915.
  • [18] Sahin B., Karabulut S., Filiz AK, Galium aparine L. protects against acetaminophen-induced hepatotoxicity in rats, Chem Biol Interact., 366 (2022) 110119.
  • [19] Yulak F., Joha Z., Öztürk A., İnan D.Ş., Taşkıran AŞ, Enoxaparin Protects C6 Glioma Cells from Glutamate-Induced Cytotoxicity by Reducing Oxidative Stress and Apoptosis, Mol Neurobiol., 62(4) (2025) 4631-4640.
  • [20] Hui K.K., Chater T.E., Goda Y., Tanaka M, How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders, Front Mol Neurosci., 15 (2022) 893111.
  • [21] Whitaker A.M., Farooq M.A., Edwards S., Gilpin NW, Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats, Stress., 19(1) (2016) 69-77.
  • [22] Almeida F.B., Pinna G., Barros HMT, The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD, Int J Mol Sci., 22(11) (2021) 5495.
  • [23] Whitaker A.M., Gilpin N.W., Edwards S, Animal models of post-traumatic stress disorder and recent neurobiological insights, Behav Pharmacol. 25(56) (2014) 398-409.
  • [24] Acheson D.T., Gresack J.E., Risbrough VB, Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder, Neuropharmacology., 62(2) (2012) 674-685.
  • [25] Devignes Q., Ren B., Clancy KJ, Trauma-related intrusive memories and anterior hippocampus structural covariance: an ecological momentary assessment study in posttraumatic stress disorder, Transl Psychiatry, 14 (2024) 74.
  • [26] Postel C,. Mary A., Dayan J, Variations in response to trauma and hippocampal subfield changes, Neurobiol Stress., 15 (2021) 100346.
  • [27] Grigoryan GA, Neuroinflammation and Reconsolidation of Memory, Neurochem. J., 16 (2022) 109-120.
  • [28] Lee D.H., Lee J.Y., Hong DY, Neuroinflammation in Post-Traumatic Stress Disorder, Biomedicines., 10(5) (2022) 953.
  • [29] Gong Y., Wu M., Shen J, Inhibition of the NKCC1/NF-κB Signaling Pathway Decreases Inflammation and Improves Brain Edema and Nerve Cell Apoptosis in an SBI Rat Model, Front Mol Neurosci., 14 (2021) 641993.
  • [30] Kelmendi B., Adams T.G., Yarnell S., Southwick S., Abdallah C.G., Krystal JH, PTSD: from neurobiology to pharmacological treatments, Eur J Psychotraumatol., 7 (2016) 31858.
  • [31] Fang Q., Li Z., Huang GD, Traumatic Stress Produces Distinct Activations of GABAergic and Glutamatergic Neurons in Amygdala, Front Neurosci., 12 (2018) 387.
There are 31 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Natural Sciences
Authors

Sebahattin Karabulut 0000-0002-3261-4125

Sümeyra Koç 0009-0004-7328-788X

Ayşegül Öztürk 0000-0001-8130-7968

Project Number 1919B012305656
Publication Date June 30, 2025
Submission Date January 22, 2025
Acceptance Date May 13, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Karabulut, S., Koç, S., & Öztürk, A. (2025). The Effect of NKCC1 Inhibitor Azosemide on Emotional Behaviors and Hippocampal GABA Levels in a Rat Model of Post-traumatic Stress Disorder. Cumhuriyet Science Journal, 46(2), 268-273. https://doi.org/10.17776/csj.1624998