Research Article
BibTex RIS Cite

Benzen Bileşiklerinin Fizikokimyasal Özelliklerinin Zagreb Omikron İndekslerinin Uygulanması Yoluyla Modellenmesi

Year 2025, Volume: 46 Issue: 2, 360 - 368, 30.06.2025
https://doi.org/10.17776/csj.1617573

Abstract

Kantitatif yapı-özellik ilişkisi (QSPR) paradigmalarının incelenmesi, moleküler varlıkların kimyasal ve fiziksel özelliklerini açıklamak için topolojik indeksler kullanır. Mevcut çalışmada, analiz esas olarak bir çaprazın omicron derecesine ve bağlı grafiklerle ilgili Zagreb omicron indekslerine odaklanmıştır, bu da (kimyasal) grafik teorisi alanında önemli bir ilerlemeyi göstermektedir. Zagreb omicron indeksleri ile benzenlerin fizikokimyasal özellikleri arasında, pi-elektron enerjisi, moleküler ağırlık, polarizasyon ve göreceli formül kütlesi dahil olmak üzere, 0.995'i aşan korelasyonlar olduğu gösterilmiştir. Sonuçlar, ilk Zagreb omicron indeksi ile benzenlerin dereceye dayalı topolojik indeksleri arasındaki korelasyon katsayılarının 0.96'dan büyük olduğunu göstermektedir. Ayrıca, bu yeni indekslerin yapısal duyarlılık ve ani değişim değerlendirmeleri yapıldı ve alternatif topolojik indekslerle karşılaştırıldı. Sonuçlar ve değerlendirmeler, Zagreb omicron indekslerinin QSPR araştırma girişimleri için önemli olduğunu gösteren önemli kanıtlar sunmaktadır.

References

  • [1] Kumar V., Das S., On Structure Sensitivity and Chemical Applicability of Some Novel Degree-Based Topological Indices, MATCH Commun. Math. Comput. Chem., 92 (2024) 165–203.
  • [2] Wiener H., Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947) 17–20.
  • [3] Platt J. R., Influence of neighbour bonds on additive bond properties in paraffins, J. Chem. Phys., 15 (1947) 419-420.
  • [4] Hosoya H., The most private features of the topological index, MATI., (1) (2019) 25-33.
  • [5] Gutman I., Trinajstić N., Graph theory and molecular orbitals, Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535–538.
  • [6] Randić M., Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975) 6609–6615.
  • [7] Gutman I., Furtula B., Elphick C., Three new/old vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem., 72 (2014) 617–632.
  • [8] Zhou B., Trinajstić N., On a novel connectivity index, J. Math. Chem., 46 (2009) 1252–1270.
  • [9] Vukičević D., Gašperov M., Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta., 83 (2010) 243–260.
  • [10] Favaron O., Mahéo M., Saclé J. F., Some eigenvalue properties in graphs (conjectures of graffiti-II), Discrete Math., 111 (1993) 197–220.
  • [11] Estrada E., Torres L., Rodriguez L., Gutman I., An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998) 849–855.
  • [12] Furtula B., Graovac A., Vukičević D., Augmented Zagreb index, J. Math. Chem., 48 (2010) 370–380.
  • [13] Shirdel G., Rezapour H., Sayadi A., The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013) 213–220.
  • [14] Alameri A., Second hyper-Zagreb index of titania nanotubes and their applications, IEEE Access., 9 (2021) 9567–9571.
  • [15] Vukičević D., Furtula B., Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009) 1369–1376.
  • [16] Ediz S., Computing GA4 index of an infinite class of nano star dendrimers, Optoelectronics and Advanced Materials Rapid Communications., 4 (12) (2010) 2198-2199.
  • [17] Shegehalli V., Kanabur R., Arithmetic-Geometric indices of path graph, J. Comput. Math. Sci., 16 (2015) 19–24.
  • [18] Gutman I., Geometric approach to degree-based topological indices:Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021) 11–16.
  • [19] Kulli V., Gutman I., Computation of Sombor indices of certain networks, SSRG Int. J. Appl. Chem., 8 (2021) 1–5.
  • [20]Kulli V., Nirmala index, Int. J. Math. Trends Technol., 67 (2021) 8–12.
  • [21] Kulli V., Lokesha V., Nirupadi K., Computation of inverse Nirmala indices of certain nanostructures, Int. J. Math. Comb., 2 (2021) 33–40.
  • [22] Nikolić S., Trinajstić N., Comparison between the Vertex- and Edge-Connectivity Indices for Benzenoid Hydrocarbons, J. Chem. Inf. Comput. Sci., 38 (1998) 42-46.
  • [23]Hayat S., Khan S., Khan A., Imran M., Distance-based topological descriptors for measuring the 𝜋-electronic energy of benzenoid hydrocarbons with applications to carbon nanotubes, Math. Meth. Appl. Sci., (2020) 1–20.
  • [24]Hayat S., Khani S., Khan A., Imran M., A Computer-Based Method to Determine Predictive Potential of Distance-Spectral Descriptors for Measuring the π-Electronic Energy of Benzenoid Hydrocarbons with Applications, IEEE Access., 9 (2021) 19238-19253.
  • [25]Shanmukha M. C., Usha A., Kulli V. R., Shilpa K. C., Chemical applicability and curvilinear regression models of vertex-degree-based topological index: Elliptic Sombor index, Int J Quantum Chem., (2024) 124: e27376.
  • [26]Malik M. Y. H., Binyamin M. A., Hayat S., Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications, Polycyclic Aromatic Compounds., 42 (2022) 6267-6281.
  • [27] Furtula B., Gutman I., Dehmer M., On structure-sensitivity of degree-based topological indices, Appl. Math. Comput., 219 (2013) 8973–8978.
  • [28]Redˇzepovi´c I., Furtula B., Comparative study on structural sensitivity of eigenvalue-based molecular descriptors, J. Math. Chem., 59 (2021) 476–487.
  • [29]Zemljič K., Žigert Pleteršek P., Smoothness of graph energy in chemical graphs, Mathematics., 11 (2023) #552.

Modeling The Physicochemical Characteristics of Benzene Compounds Through the Application of Zagreb Omicron Indices

Year 2025, Volume: 46 Issue: 2, 360 - 368, 30.06.2025
https://doi.org/10.17776/csj.1617573

Abstract

The examination of quantitative structure-property relationship (QSPR) paradigms uses topological indices to explain the chemical and physical properties of molecular entities. In the current study, the analysis primarily focused on the omicron degree of a diagonal, along with the Zagreb omicron indices concerning connected graphs, which indicates a significant advancement in the field of (chemical) graph theory. It has been shown that there are correlations exceeding 0.995 between the Zagreb omicron indices and the physicochemical properties of benzenes, including pi-electron energy, molecular weight, polarization, and relative formula mass. The results show that the correlation coefficients between the first Zagreb omicron index and the degree-based topological indices of benzenes are greater than 0.96. Additionally, structural sensitivity and abrupt change evaluations of these new indices were conducted and compared with alternative topological indices. The results and evaluations provide significant evidence indicating that Zagreb omicron indices are important for QSPR research initiatives.

References

  • [1] Kumar V., Das S., On Structure Sensitivity and Chemical Applicability of Some Novel Degree-Based Topological Indices, MATCH Commun. Math. Comput. Chem., 92 (2024) 165–203.
  • [2] Wiener H., Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947) 17–20.
  • [3] Platt J. R., Influence of neighbour bonds on additive bond properties in paraffins, J. Chem. Phys., 15 (1947) 419-420.
  • [4] Hosoya H., The most private features of the topological index, MATI., (1) (2019) 25-33.
  • [5] Gutman I., Trinajstić N., Graph theory and molecular orbitals, Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535–538.
  • [6] Randić M., Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975) 6609–6615.
  • [7] Gutman I., Furtula B., Elphick C., Three new/old vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem., 72 (2014) 617–632.
  • [8] Zhou B., Trinajstić N., On a novel connectivity index, J. Math. Chem., 46 (2009) 1252–1270.
  • [9] Vukičević D., Gašperov M., Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta., 83 (2010) 243–260.
  • [10] Favaron O., Mahéo M., Saclé J. F., Some eigenvalue properties in graphs (conjectures of graffiti-II), Discrete Math., 111 (1993) 197–220.
  • [11] Estrada E., Torres L., Rodriguez L., Gutman I., An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998) 849–855.
  • [12] Furtula B., Graovac A., Vukičević D., Augmented Zagreb index, J. Math. Chem., 48 (2010) 370–380.
  • [13] Shirdel G., Rezapour H., Sayadi A., The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013) 213–220.
  • [14] Alameri A., Second hyper-Zagreb index of titania nanotubes and their applications, IEEE Access., 9 (2021) 9567–9571.
  • [15] Vukičević D., Furtula B., Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009) 1369–1376.
  • [16] Ediz S., Computing GA4 index of an infinite class of nano star dendrimers, Optoelectronics and Advanced Materials Rapid Communications., 4 (12) (2010) 2198-2199.
  • [17] Shegehalli V., Kanabur R., Arithmetic-Geometric indices of path graph, J. Comput. Math. Sci., 16 (2015) 19–24.
  • [18] Gutman I., Geometric approach to degree-based topological indices:Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021) 11–16.
  • [19] Kulli V., Gutman I., Computation of Sombor indices of certain networks, SSRG Int. J. Appl. Chem., 8 (2021) 1–5.
  • [20]Kulli V., Nirmala index, Int. J. Math. Trends Technol., 67 (2021) 8–12.
  • [21] Kulli V., Lokesha V., Nirupadi K., Computation of inverse Nirmala indices of certain nanostructures, Int. J. Math. Comb., 2 (2021) 33–40.
  • [22] Nikolić S., Trinajstić N., Comparison between the Vertex- and Edge-Connectivity Indices for Benzenoid Hydrocarbons, J. Chem. Inf. Comput. Sci., 38 (1998) 42-46.
  • [23]Hayat S., Khan S., Khan A., Imran M., Distance-based topological descriptors for measuring the 𝜋-electronic energy of benzenoid hydrocarbons with applications to carbon nanotubes, Math. Meth. Appl. Sci., (2020) 1–20.
  • [24]Hayat S., Khani S., Khan A., Imran M., A Computer-Based Method to Determine Predictive Potential of Distance-Spectral Descriptors for Measuring the π-Electronic Energy of Benzenoid Hydrocarbons with Applications, IEEE Access., 9 (2021) 19238-19253.
  • [25]Shanmukha M. C., Usha A., Kulli V. R., Shilpa K. C., Chemical applicability and curvilinear regression models of vertex-degree-based topological index: Elliptic Sombor index, Int J Quantum Chem., (2024) 124: e27376.
  • [26]Malik M. Y. H., Binyamin M. A., Hayat S., Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications, Polycyclic Aromatic Compounds., 42 (2022) 6267-6281.
  • [27] Furtula B., Gutman I., Dehmer M., On structure-sensitivity of degree-based topological indices, Appl. Math. Comput., 219 (2013) 8973–8978.
  • [28]Redˇzepovi´c I., Furtula B., Comparative study on structural sensitivity of eigenvalue-based molecular descriptors, J. Math. Chem., 59 (2021) 476–487.
  • [29]Zemljič K., Žigert Pleteršek P., Smoothness of graph energy in chemical graphs, Mathematics., 11 (2023) #552.
There are 29 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other), Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics), Applied Mathematics (Other)
Journal Section Natural Sciences
Authors

İdris Çiftçi 0000-0002-2698-0807

Publication Date June 30, 2025
Submission Date January 10, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Çiftçi, İ. (2025). Modeling The Physicochemical Characteristics of Benzene Compounds Through the Application of Zagreb Omicron Indices. Cumhuriyet Science Journal, 46(2), 360-368. https://doi.org/10.17776/csj.1617573