Research Article
BibTex RIS Cite

Biogenic Synthesis and Characterization of Silver Nanoparticles Using Hoya Carnosa Flower Extract

Year 2025, Volume: 46 Issue: 2, 286 - 291, 30.06.2025
https://doi.org/10.17776/csj.1607025

Abstract

Silver nanoparticles (AgNPs) are important metallic nanomaterials thanks to their superior antibacterial properties and wide application areas; however, conventional synthesis methods are quite limiting in terms of environmental and economic aspects. This situation causes green synthesis methods to be investigated more and more. Hoya carnosa plant have the potential to be an alternative biogenic synthesis agent to traditional methods thanks to their rich phytochemical content. In this study, biogenic AgNPs were synthesized for the first time using Hoya carnosa flower extract. The reaction was completed in a short time, such as 15 min under room conditions. AgNPs were comprehensively characterized by UV-Vis, FTIR, XRD, SEM, TEM and EDX analyses. According to the obtained results, the average size of AgNPs was calculated as 16 nm by the Debye Scherrer equation and 21 nm by TEM analysis. This study demonstrates that the use of Hoya carnosa flower extract can be a successful alternative to traditional methods by contributing to the synthesis of AgNPs in an environmentally friendly and rapid manner.

Thanks

The author extends heartfelt gratitude to Assoc. Prof. Dr. Serap ÇETİNKAYA for her invaluable support and to Necla SÖZÜBATMAZ for generously providing the Hoya carnosa flowers used in this study.

References

  • [1] Saravanan A., Kumar P. S., Karishma S., Vo D.-V. N., Jeevanantham S., Yaashikaa P. R., George C. S., A Review on Biosynthesis of Metal Nanoparticles and Its Environmental Applications, Chemosphere, 264 (2021) 128580.
  • [2] Malik A., Khan J. M., Alhomida A. S., Ola M. S., Alshehri M. A., Ahmad A., Metal Nanoparticles: Biomedical Applications and Their Molecular Mechanisms of Toxicity, Chem. Pap., 76(10) (2022) 6073–6095.
  • [3] Sosna-Głębska A., Szczecińska N., Znajdek K., Sibiński M., Review on Metallic Oxide Nanoparticles and Their Application in Optoelectronic Devices, Acta Innov., 30 (2019) 5–15.
  • [4] Gupta N., Kumar A., Dhawan S. K., Dhasmana H., Kumar A., Kumar V., Verma A., Jain V. K., Metal Nanoparticles Enhanced Thermophysical Properties of Phase Change Material for Thermal Energy Storage, Mater. Today: Proc., 32 (2020) 463–467.
  • [5] Dos Santos C. A., Ingle A. P., Rai M., The Emerging Role of Metallic Nanoparticles in Food, Appl. Microbiol. Biotechnol., 104 (2020) 2373–2383.
  • [6] Cruz-Luna A. R., Cruz-Martínez H., Vásquez-López A., Medina D. I., Metal Nanoparticles as Novel Antifungal Agents for Sustainable Agriculture: Current Advances and Future Directions, J. Fungi, 7(12) (2021) 1033.
  • [7] Bhandari V., Jose S., Badanayak P., Sankaran A., Anandan V., Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review, Ind. Eng. Chem. Res., 61(1) (2022) 86–101.
  • [8] Arroyo G. V., Madrid A. T., Gavilanes A. F., Naranjo B., Debut A., Arias M. T., Angulo Y., Green Synthesis of Silver Nanoparticles for Application in Cosmetics, J. Environ. Sci. Health A, 55(11) (2020) 1304–1320.
  • [9] Joudeh N., Linke D., Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists, J. Nanobiotechnology, 20(1) (2022) 262.
  • [10] Batlle X., Moya C., Escoda-Torroella M., Iglesias Ò., Rodríguez A. F., Labarta A., Magnetic Nanoparticles: From the Nanostructure to the Physical Properties, J. Magn. Magn. Mater., 543 (2022) 168594.
  • [11] Ratan Z. A., Haidere M. F., Nurunnabi M. D., Shahriar S. M., Ahammad A. S., Shim Y. Y., Reaney M. J., Cho J. Y., Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects, Cancers, 12(4) (2020) 855.
  • [12] Bamal D., Singh A., Chaudhary G., Kumar M., Singh M., Rani N., Mundlia P., Sehrawat A. R., Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review, Nanomater., 11(8) (2021) 2086.
  • [13] Ahmed S. F., Mofijur M., Rafa N., Chowdhury A. T., Chowdhury S., Nahrin M., Islam A. S., Ong H. C., Green Approaches in Synthesising Nanomaterials for Environmental Nanobioremediation: Technological Advancements, Applications, Benefits and Challenges, Environ. Res., 204 (2022) 111967.
  • [14] Rosman N. S. R., Harun N. A., Idris I., Wan Ismail W. I., Nanobiotechnology: Nature-Inspired Silver Nanoparticles towards Green Synthesis, Energy Environ., 32(7) (2021) 1183–1206.
  • [15] Akhtar M. S., Panwar J., Yun Y.-S., Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts, ACS Sustain. Chem. Eng., 1(6) (2013) 591–602.
  • [16] Sharma D., Kanchi S., Bisetty K., Biogenic Synthesis of Nanoparticles: A Review, Arab. J. Chem., 12(8) (2019) 3576–3600.
  • [17] Ritu, Verma K. K., Das A., Chandra P., Phytochemical-Based Synthesis of Silver Nanoparticle: Mechanism and Potential Applications, BioNanoScience, 13(3) (2023) 1359–1380.
  • [18] Fistiana F. A., Evanita E., Riadi A. A., Sistem Pendukung Keputusan Pemilihan Tanaman Hias Hoya Carnosa Berbasis Android Menggunakan Metode TOPSIS, Jurasik, 6(2) (2021) 305–311.
  • [19] Alam N., Siddique W., Mishra M. K., Pandey A., Purshottam D. K., Singh K. J., Tewari S. K., Chakrabarty D., Micropropagation of Hoya Carnosa, H. Kerrii, H. Parasitica, and H. Longifolia Using Tray-Based Floating and Stationary Hydroponic Systems, Sci. Hortic., 311 (2023) 111804.
  • [20] Ab-Rahim N., Ismail W. I., Rosdan M. N. F., Mail M. H., Lamin R. A. C., Ismail S., Antibacterial Activity of Hoya Diversifolia Ethanolic Leaves Extract, Biomed. Pharmacol. J., 12(2) (2019) 857–862.
  • [21] Rumaling M. K., Fong S. Y., Rao P. V., Gisil J., Sani M. H. M., Wan Saudi W. S., Pharmacological Properties of Hoya (Apocynaceae): A Systematic Review, Nat. Prod. Res., (2024) 1–17.
  • [22] Rahayu M. L., Bakta I. M., Suardana W., Astawa N. M., Arijana I. G. K., Tunas I. K., Ethanol Extraction of Hoya Carnosa Leaves Improved Stroma of Middle Ear Epithelium Infected by Pseudomonas Aeruginosa, Biomed. Pharmacol. J., 12(1) (2019) 171.
  • [23] Mochizuki K., Furukawa S., Kawakita A., Pollinia Transfer on Moth Legs in Hoya Carnosa (Apocynaceae), Am. J. Bot., 104(6) (2017) 953–960.
  • [24] Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R. E., Herrera-Urbina, R., Tánori, J., Iñiguez-Palomares, C., Maldonado, A., Synthesis of Silver Nanoparticles Using Reducing Agents Obtained From Natural Sources (Rumex hymenosepalus Extracts), Nanoscale Res. Lett., 8 (2013) 1-9.
  • [25] Bhardwaj, A., Gupta, N., Green Synthesis and Characterization of Silver Nanoparticles Using Seed Extract of Zanthoxylum armatum and Their Kinetic Study, Chem. Afr., (2025) 1-19.
  • [26] Fan J., Cheng Y., Sun M., Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications, Chem. Rec., 20(12) (2020) 1474–1504.
  • [27] Chand K., Cao D., Eldin Fouad D., Hussain Shah A., Qadeer Dayo A., Zhu K., Nazim Lakhan M., Mehdi G., Dong S., Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts, Arab. J. Chem., 13(11) (2020) 8248–8261.
  • [28] Abraham J., Saraf S., Mustafa V., Chaudhary Y., Sivanangam S., Synthesis and Evaluation of Silver Nanoparticles Using Cymodocea Rotundata against Clinical Pathogens and Human Osteosarcoma Cell Line, J. Appl. Pharm. Sci., 7(6) (2017) 055–061.
  • [29] Jyoti K., Baunthiyal M., Singh A., Characterization of Silver Nanoparticles Synthesized Using Urtica Dioica Linn. Leaves and Their Synergistic Effects with Antibiotics, J. Radiat. Res. Appl. Sci., 9(3) (2016) 17–227.
  • [30] Kumar B., Smita K., Cumbal L., Debut A., Green Synthesis of Silver Nanoparticles Using Andean Blackberry Fruit Extract, Saudi J. Biol. Sci., 24(1) (2017) 45–50.
  • [31] Sivaraman, S. K., Elango, I., Kumar, S., Santhanam, V., A Green Protocol for Room Temperature Synthesis of Silver Nanoparticles in Seconds. Curr. Sci., 97(7) (2009) 1055-1059.
  • [32] Vidhu V. K., Philip D., Spectroscopic, Microscopic and Catalytic Properties of Silver Nanoparticles Synthesized Using Saraca Indica Flower, Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 117 (2014) 102–108.
  • [33] Padalia H., Moteriya P., Chanda S., Green Synthesis of Silver Nanoparticles from Marigold Flower and Its Synergistic Antimicrobial Potential, Arab. J. Chem., 8(5) (2015) 732–741.
  • [34] Prashanth Kumar P. G., Shoukat Ali R. A., Jagadisha A. S., Umesh S. D., Synthesis and Studies of Cr Doped Zn Ferrites, Mater. Today: Proc., 36 (2021) 837–840.
  • [35] Azarbani F., Shiravand S., Green Synthesis of Silver Nanoparticles by Ferulago Macrocarpa Flowers Extract and Their Antibacterial, Antifungal and Toxic Effects, Green Chem. Lett. Rev., 13(1) (2020) 41–49.
  • [36] Mata R., Reddy Nakkala J., Rani Sadras S., Catalytic and Biological Activities of Green Silver Nanoparticles Synthesized from Plumeria Alba (Frangipani) Flower Extract, Mater. Sci. Eng. C., 51 (2015) 216–225.
  • [37] Moteriya P., Chanda S., Synthesis and Characterization of Silver Nanoparticles Using Caesalpinia Pulcherrima Flower Extract and Assessment of Their in Vitro Antimicrobial, Antioxidant, Cytotoxic, and Genotoxic Activities, Artif. Cells, Nanomed., Biotechnol., 45(8) (2017) 1556–1567.
  • [38] Hemmati S., Rashtiani A., Zangeneh M. M., Mohammadi P., Zangeneh A., Veisi H., Green Synthesis and Characterization of Silver Nanoparticles Using Fritillaria Flower Extract and Their Antibacterial Activity against Some Human Pathogens, Polyhedron, 158 (2019) 8–14.
  • [39] Bindhu M. R., Umadevi M., Esmail G. A., Al-Dhabi N. A., Arasu M. V., Green Synthesis and Characterization of Silver Nanoparticles from Moringa Oleifera Flower and Assessment of Antimicrobial and Sensing Properties, J. Photochem. Photobiol. B: Biol., 205 (2020) 111836.
  • [40] Varadavenkatesan T., Selvaraj R., Vinayagam R., Dye Degradation and Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Ipomoea Digitata Linn. Flower Extract, Int. J. Sci. Environ. Technol., 16(5) (2019) 2395–2404.
  • [41] Patil M. P., Singh R. D., Koli P. B., Patil K. T., Jagdale B. S., Tipare A. R., Kim G.-D., Antibacterial Potential of Silver Nanoparticles Synthesized Using Madhuca Longifolia Flower Extract as a Green Resource, Microb. Pathog., 121 (2018) 184–189.
  • [42] Lee Y. J., Song K., Cha S.-H., Cho S., Kim Y. S., Park Y., Sesquiterpenoids from Tussilago Farfara Flower Bud Extract for the Eco-Friendly Synthesis of Silver and Gold Nanoparticles Possessing Antibacterial and Anticancer Activities, Nanomater., 9(6) (2019) 819.
  • [43] Mahmoodi Esfanddarani H., Abbasi Kajani A., Bordbar A.-K., Green Synthesis of Silver Nanoparticles Using Flower Extract of Malva Sylvestris and Investigation of Their Antibacterial Activity, IET Nanobiotechnol., 12(4) (2018) 412–416.

Hoya Carnosa Çiçek Ekstraktı Kullanılarak Gümüş Nanopartiküllerinin Biyojenik Sentezi Ve Karakterizasyonu

Year 2025, Volume: 46 Issue: 2, 286 - 291, 30.06.2025
https://doi.org/10.17776/csj.1607025

Abstract

Gümüş nanopartiküller, üstün antibakteriyel özellikleri ve geniş uygulama alanları nedeniyle önemli metalik nanomalzemelerdir, ancak geleneksel sentez yöntemleri çevresel ve ekonomik açıdan oldukça sınırlayıcıdır. Bu durum yeşil sentez yöntemlerinin giderek daha fazla araştırılmasına sebep olmaktadır. Hoya carnosa bitkisi ise, içeriğindeki zengin fitokimyasallar sayesinde geleneksel yöntemlere alternatif bir biyojenik sentez ajanı olma potansiyeline sahiptir. Bu çalışmada, Hoya carnosa çiçek ekstraktı kullanılarak ilk kez gümüş nanopartiküllerinin biyojenik sentezi gerçekleştirilmiştir. Reaksiyon, oda koşullarında 15 dakika gibi kısa bir sürede tamamlanmıştır. Gümüş nanopartiküller, UV-Vis, FTIR, XRD, SEM, TEM ve EDX analizleri ile ayrıntılı bir biçimde karakterize edilmiştir. Elde edilen sonuçlara göre, nanopartiküllerin ortalama boyutu Debye Scherrer eşitliği ile 16 nm, TEM analizine göre ise 21 nm olarak hesaplanmıştır. Bu çalışma, çevre dostu ve hızlı bir yöntemle gümüş nanopartikül sentezine katkıda bulunarak, Hoya carnosa çiçek ekstraktı kullanımının geleneksel yöntemlere başarılı bir alternatif olabileceğini göstermektedir.

References

  • [1] Saravanan A., Kumar P. S., Karishma S., Vo D.-V. N., Jeevanantham S., Yaashikaa P. R., George C. S., A Review on Biosynthesis of Metal Nanoparticles and Its Environmental Applications, Chemosphere, 264 (2021) 128580.
  • [2] Malik A., Khan J. M., Alhomida A. S., Ola M. S., Alshehri M. A., Ahmad A., Metal Nanoparticles: Biomedical Applications and Their Molecular Mechanisms of Toxicity, Chem. Pap., 76(10) (2022) 6073–6095.
  • [3] Sosna-Głębska A., Szczecińska N., Znajdek K., Sibiński M., Review on Metallic Oxide Nanoparticles and Their Application in Optoelectronic Devices, Acta Innov., 30 (2019) 5–15.
  • [4] Gupta N., Kumar A., Dhawan S. K., Dhasmana H., Kumar A., Kumar V., Verma A., Jain V. K., Metal Nanoparticles Enhanced Thermophysical Properties of Phase Change Material for Thermal Energy Storage, Mater. Today: Proc., 32 (2020) 463–467.
  • [5] Dos Santos C. A., Ingle A. P., Rai M., The Emerging Role of Metallic Nanoparticles in Food, Appl. Microbiol. Biotechnol., 104 (2020) 2373–2383.
  • [6] Cruz-Luna A. R., Cruz-Martínez H., Vásquez-López A., Medina D. I., Metal Nanoparticles as Novel Antifungal Agents for Sustainable Agriculture: Current Advances and Future Directions, J. Fungi, 7(12) (2021) 1033.
  • [7] Bhandari V., Jose S., Badanayak P., Sankaran A., Anandan V., Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review, Ind. Eng. Chem. Res., 61(1) (2022) 86–101.
  • [8] Arroyo G. V., Madrid A. T., Gavilanes A. F., Naranjo B., Debut A., Arias M. T., Angulo Y., Green Synthesis of Silver Nanoparticles for Application in Cosmetics, J. Environ. Sci. Health A, 55(11) (2020) 1304–1320.
  • [9] Joudeh N., Linke D., Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists, J. Nanobiotechnology, 20(1) (2022) 262.
  • [10] Batlle X., Moya C., Escoda-Torroella M., Iglesias Ò., Rodríguez A. F., Labarta A., Magnetic Nanoparticles: From the Nanostructure to the Physical Properties, J. Magn. Magn. Mater., 543 (2022) 168594.
  • [11] Ratan Z. A., Haidere M. F., Nurunnabi M. D., Shahriar S. M., Ahammad A. S., Shim Y. Y., Reaney M. J., Cho J. Y., Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects, Cancers, 12(4) (2020) 855.
  • [12] Bamal D., Singh A., Chaudhary G., Kumar M., Singh M., Rani N., Mundlia P., Sehrawat A. R., Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review, Nanomater., 11(8) (2021) 2086.
  • [13] Ahmed S. F., Mofijur M., Rafa N., Chowdhury A. T., Chowdhury S., Nahrin M., Islam A. S., Ong H. C., Green Approaches in Synthesising Nanomaterials for Environmental Nanobioremediation: Technological Advancements, Applications, Benefits and Challenges, Environ. Res., 204 (2022) 111967.
  • [14] Rosman N. S. R., Harun N. A., Idris I., Wan Ismail W. I., Nanobiotechnology: Nature-Inspired Silver Nanoparticles towards Green Synthesis, Energy Environ., 32(7) (2021) 1183–1206.
  • [15] Akhtar M. S., Panwar J., Yun Y.-S., Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts, ACS Sustain. Chem. Eng., 1(6) (2013) 591–602.
  • [16] Sharma D., Kanchi S., Bisetty K., Biogenic Synthesis of Nanoparticles: A Review, Arab. J. Chem., 12(8) (2019) 3576–3600.
  • [17] Ritu, Verma K. K., Das A., Chandra P., Phytochemical-Based Synthesis of Silver Nanoparticle: Mechanism and Potential Applications, BioNanoScience, 13(3) (2023) 1359–1380.
  • [18] Fistiana F. A., Evanita E., Riadi A. A., Sistem Pendukung Keputusan Pemilihan Tanaman Hias Hoya Carnosa Berbasis Android Menggunakan Metode TOPSIS, Jurasik, 6(2) (2021) 305–311.
  • [19] Alam N., Siddique W., Mishra M. K., Pandey A., Purshottam D. K., Singh K. J., Tewari S. K., Chakrabarty D., Micropropagation of Hoya Carnosa, H. Kerrii, H. Parasitica, and H. Longifolia Using Tray-Based Floating and Stationary Hydroponic Systems, Sci. Hortic., 311 (2023) 111804.
  • [20] Ab-Rahim N., Ismail W. I., Rosdan M. N. F., Mail M. H., Lamin R. A. C., Ismail S., Antibacterial Activity of Hoya Diversifolia Ethanolic Leaves Extract, Biomed. Pharmacol. J., 12(2) (2019) 857–862.
  • [21] Rumaling M. K., Fong S. Y., Rao P. V., Gisil J., Sani M. H. M., Wan Saudi W. S., Pharmacological Properties of Hoya (Apocynaceae): A Systematic Review, Nat. Prod. Res., (2024) 1–17.
  • [22] Rahayu M. L., Bakta I. M., Suardana W., Astawa N. M., Arijana I. G. K., Tunas I. K., Ethanol Extraction of Hoya Carnosa Leaves Improved Stroma of Middle Ear Epithelium Infected by Pseudomonas Aeruginosa, Biomed. Pharmacol. J., 12(1) (2019) 171.
  • [23] Mochizuki K., Furukawa S., Kawakita A., Pollinia Transfer on Moth Legs in Hoya Carnosa (Apocynaceae), Am. J. Bot., 104(6) (2017) 953–960.
  • [24] Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R. E., Herrera-Urbina, R., Tánori, J., Iñiguez-Palomares, C., Maldonado, A., Synthesis of Silver Nanoparticles Using Reducing Agents Obtained From Natural Sources (Rumex hymenosepalus Extracts), Nanoscale Res. Lett., 8 (2013) 1-9.
  • [25] Bhardwaj, A., Gupta, N., Green Synthesis and Characterization of Silver Nanoparticles Using Seed Extract of Zanthoxylum armatum and Their Kinetic Study, Chem. Afr., (2025) 1-19.
  • [26] Fan J., Cheng Y., Sun M., Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications, Chem. Rec., 20(12) (2020) 1474–1504.
  • [27] Chand K., Cao D., Eldin Fouad D., Hussain Shah A., Qadeer Dayo A., Zhu K., Nazim Lakhan M., Mehdi G., Dong S., Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts, Arab. J. Chem., 13(11) (2020) 8248–8261.
  • [28] Abraham J., Saraf S., Mustafa V., Chaudhary Y., Sivanangam S., Synthesis and Evaluation of Silver Nanoparticles Using Cymodocea Rotundata against Clinical Pathogens and Human Osteosarcoma Cell Line, J. Appl. Pharm. Sci., 7(6) (2017) 055–061.
  • [29] Jyoti K., Baunthiyal M., Singh A., Characterization of Silver Nanoparticles Synthesized Using Urtica Dioica Linn. Leaves and Their Synergistic Effects with Antibiotics, J. Radiat. Res. Appl. Sci., 9(3) (2016) 17–227.
  • [30] Kumar B., Smita K., Cumbal L., Debut A., Green Synthesis of Silver Nanoparticles Using Andean Blackberry Fruit Extract, Saudi J. Biol. Sci., 24(1) (2017) 45–50.
  • [31] Sivaraman, S. K., Elango, I., Kumar, S., Santhanam, V., A Green Protocol for Room Temperature Synthesis of Silver Nanoparticles in Seconds. Curr. Sci., 97(7) (2009) 1055-1059.
  • [32] Vidhu V. K., Philip D., Spectroscopic, Microscopic and Catalytic Properties of Silver Nanoparticles Synthesized Using Saraca Indica Flower, Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 117 (2014) 102–108.
  • [33] Padalia H., Moteriya P., Chanda S., Green Synthesis of Silver Nanoparticles from Marigold Flower and Its Synergistic Antimicrobial Potential, Arab. J. Chem., 8(5) (2015) 732–741.
  • [34] Prashanth Kumar P. G., Shoukat Ali R. A., Jagadisha A. S., Umesh S. D., Synthesis and Studies of Cr Doped Zn Ferrites, Mater. Today: Proc., 36 (2021) 837–840.
  • [35] Azarbani F., Shiravand S., Green Synthesis of Silver Nanoparticles by Ferulago Macrocarpa Flowers Extract and Their Antibacterial, Antifungal and Toxic Effects, Green Chem. Lett. Rev., 13(1) (2020) 41–49.
  • [36] Mata R., Reddy Nakkala J., Rani Sadras S., Catalytic and Biological Activities of Green Silver Nanoparticles Synthesized from Plumeria Alba (Frangipani) Flower Extract, Mater. Sci. Eng. C., 51 (2015) 216–225.
  • [37] Moteriya P., Chanda S., Synthesis and Characterization of Silver Nanoparticles Using Caesalpinia Pulcherrima Flower Extract and Assessment of Their in Vitro Antimicrobial, Antioxidant, Cytotoxic, and Genotoxic Activities, Artif. Cells, Nanomed., Biotechnol., 45(8) (2017) 1556–1567.
  • [38] Hemmati S., Rashtiani A., Zangeneh M. M., Mohammadi P., Zangeneh A., Veisi H., Green Synthesis and Characterization of Silver Nanoparticles Using Fritillaria Flower Extract and Their Antibacterial Activity against Some Human Pathogens, Polyhedron, 158 (2019) 8–14.
  • [39] Bindhu M. R., Umadevi M., Esmail G. A., Al-Dhabi N. A., Arasu M. V., Green Synthesis and Characterization of Silver Nanoparticles from Moringa Oleifera Flower and Assessment of Antimicrobial and Sensing Properties, J. Photochem. Photobiol. B: Biol., 205 (2020) 111836.
  • [40] Varadavenkatesan T., Selvaraj R., Vinayagam R., Dye Degradation and Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Ipomoea Digitata Linn. Flower Extract, Int. J. Sci. Environ. Technol., 16(5) (2019) 2395–2404.
  • [41] Patil M. P., Singh R. D., Koli P. B., Patil K. T., Jagdale B. S., Tipare A. R., Kim G.-D., Antibacterial Potential of Silver Nanoparticles Synthesized Using Madhuca Longifolia Flower Extract as a Green Resource, Microb. Pathog., 121 (2018) 184–189.
  • [42] Lee Y. J., Song K., Cha S.-H., Cho S., Kim Y. S., Park Y., Sesquiterpenoids from Tussilago Farfara Flower Bud Extract for the Eco-Friendly Synthesis of Silver and Gold Nanoparticles Possessing Antibacterial and Anticancer Activities, Nanomater., 9(6) (2019) 819.
  • [43] Mahmoodi Esfanddarani H., Abbasi Kajani A., Bordbar A.-K., Green Synthesis of Silver Nanoparticles Using Flower Extract of Malva Sylvestris and Investigation of Their Antibacterial Activity, IET Nanobiotechnol., 12(4) (2018) 412–416.
There are 43 citations in total.

Details

Primary Language English
Subjects Inorganic Green Chemistry
Journal Section Natural Sciences
Authors

Halil İbrahim Çetintaş 0000-0003-1769-0098

Publication Date June 30, 2025
Submission Date December 25, 2024
Acceptance Date May 19, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Çetintaş, H. İ. (2025). Biogenic Synthesis and Characterization of Silver Nanoparticles Using Hoya Carnosa Flower Extract. Cumhuriyet Science Journal, 46(2), 286-291. https://doi.org/10.17776/csj.1607025