In this study, we analyze the oscillatory behavior of solutions to a specific class of fractional integro-differential equations. First, we derive sufficient conditions that ensure nonoscillatory solutions exhibit a well-defined asymptotic behavior. Building on this result, we establish a series of oscillation theorems that provide deeper insight into the qualitative nature of solutions. To validate our theoretical findings, we present a concrete example that demonstrates the applicability of our main results. These contributions aim to advance the theoretical framework of fractional equations, offering new perspectives on their dynamic behavior and potential applications in mathematical modeling
Fractional integro-differential equation Riemann-Liouville Derivative Riemann-Liouville Integral Oscillation
Bir sınıf kesirli integral-türev denkleminin çözümlerinin salınımlı davranışını inceledik. İlk olarak, her titreşimsiz çözümün belirli bir asimptotik davranış sergilemesi için yeterli koşulları sunduk. Daha sonra, bu asimptotik sonucu kullanarak bazı salınım teoremleri ve ispatlarını verdik. Son olarak, ana sonucumuzun geçerliliğini göstermek için bir örnek verdik.
Kesirli integral-türev denklemi Riemann-Liouville Türevi Riemann-Liouville İntegrali Salınım
Primary Language | English |
---|---|
Subjects | Ordinary Differential Equations, Difference Equations and Dynamical Systems, Applied Mathematics (Other) |
Journal Section | Natural Sciences |
Authors | |
Publication Date | March 25, 2025 |
Submission Date | December 24, 2024 |
Acceptance Date | March 1, 2025 |
Published in Issue | Year 2025Volume: 46 Issue: 1 |