Research Article
BibTex RIS Cite

Donepezil-Squaric Acid Hybrid: Synthesis, Characterization and Investigation of Anticholinesterase Inhibitory, DNA Binding and Antioxidant Properties

Year 2024, Volume: 45 Issue: 2, 216 - 226, 30.06.2024
https://doi.org/10.17776/csj.1414168

Abstract

A novel donepezil-squaric acid (DS) hybrid compound was designed, synthesized and biologically evaluated as multi-target-directed ligands against neurodegenerative disease by fusing a fragment of donepezil (D) and squaric acid (S). This study focuses on investigating the binding mechanism of double-stranded fish sperm DNA (Fsds-DNA) with DS and S. The interaction between DS and S with Fsds-DNA was explored using spectrophotometric and viscometric methods. Besides, DNA binding constants (Kb) were determined. The results reveal that DS binds to Fsds-DNA via the minor groove binding mode. The hybrid molecule demonstrates potent inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Furthermore, it exhibits significant antioxidant activity, surpassing the scavenging ability of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals compared to squaric acid alone. In conclusion, these results suggest that the hybrid molecule may serve as a potential multifunctional agent for the treatment of Alzheimer’s disease.

Supporting Institution

Kahramanmaras Sütçü İmam University Research Unit

Project Number

2019/3-21 M

References

  • [1] Carmo C.M., Mendes E., Jesus P.M., Paula F.A., Marco C.J., The Multifactorial Nature of Alzheimer’s Disease for Developing Potential Therapeutics, Curr. Top. Med. Chem., 13 (15) (2013) 1745–1770.
  • [2] Mayeux R., Sano M., Treatment of Alzheimer’s Disease, N. Engl. J. Med., 341 (22) (1999) 1670–1679.
  • [3] George G., Koyiparambath V.P., Sukumaran S., Nair A.S., Pappachan L.K., Al-Sehemi A.G., ... & Mathew B., Structural Modifications on Chalcone Framework for Developing New Class of Cholinesterase Inhibitors, International Journal of Molecular Sciences, 23 (6) (2022) 3121.
  • [4] Agis-Torres A., Sollhuber M., Fernandez M., Sanchez-Montero J., Multi-Targetdirected Ligands and Other Therapeutic Strategies in The Search of A Real Solution for Alzheimer’s Disease, Curr. Neuropharmacol., 12 (1) (2014) 2–36.
  • [5] Svobodova B., Mezeiova E., Hepnarova V., Hrabinova M., Muckova L., Kobrlova T., ... & Korabecny J, Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors, Biomolecules, 9 (8) (2019) 379.
  • [6] Chen P.H., Dong G., Cyclobutenones and Benzocyclobutenones: Versatile Synthons in Organic Synthesis, Chemistry–A European Journal, 22 (51) (2016) 18290-18315.
  • [7] Elliott T.S., Slowey A., Ye Y., Conway S.J., The Use of Phosphate Bioisosteres in Medicinal Chemistry and Chemical Biology, Med. Chem. Comm., 3 (7) (2012) 735-751.
  • [8] Henary M., Cyanine and Squaric Acid Metal Sensors, Sensors and Actuators B: Chemical, 243 (2017) 1191-1204.
  • [9] Tong C., Liu T., Saez T.V., Noteborn W.E.M., Sharp T.H., Hendrix M.M.R.M., Voets I.K., Mummery C.L., Orlova V.V., Kieltyka R.E., Squaramide-Based Supramolecular Materials for Three-Dimensional Cell Culture of Human Induced Pluripotent Stem Cells and Their Derivatives, Biomacromolecules, 19 (4) (2018) 1091-1099.
  • [10] Qian X., Jin C., Zhang X., Jiang Y., Lin C., Wang L., Squaramide Derivatives and Their Applications in Ion Recognition, Prog. Chem., 26 (10) (2014) 1701.
  • [11] Castro I., Calatayud M.L., Sletten J., Julve M., Lloret F., Squarate and Croconate in Designing One-and Two-Dimensional Oxamidato-Bridged Copper (II) Complexes: Synthesis, Crystal Structures and Magnetic Properties of [Cu2(Apox)(C4O4)(H2O)2]N· NaH2O and [Cu4(Apox)2(C5O5)2]· 6H2O. Comptes, Rendus l’Académie Des Sci. IIC-Chemistry, 4 (3) (2001) 235-243.
  • [12] Cheuquepán W., Martínez-Olivares J., Rodes A., Orts J.M., Squaric Acid Adsorption and Oxidation at Gold and Platinum Electrodes, J. Electroanal. Chem., 819 (2018) 178-186.
  • [13] Chasák J., Šlachtová V., Urban M., Brulíková L. Squaric Acid Analogues in Medicinal Chemistry, European Journal of Medicinal Chemistry, 209 (2021) 112872.
  • [14] Olmo F., Rotger C., Ramírez-Macías I., Martínez L., Marín C., Carreras L., Urbanova K., Vega M., Chaves-Lemaur G., Sampedro A., Synthesis and Biological Evaluation of N, N′-Squaramides with High in Vivo Efficacy and Low Toxicity: Toward A Low-Cost Drug Against Chagas Disease, J. Med. Chem., 57 (2014) 987-999.
  • [15] Cui D., Prashar D., Sejwal P., Luk Y.Y., Water-Driven Ligations Using Cyclic Amino Squarates: A Class of Useful SN1-Like Reactions, Chem. Commun., 47 (4) (2011) 1348-1350.
  • [16] Storer R.I., Aciro C., Jones L.H., Squaramides: Physical Properties, Synthesis and Applications, Chem. Soc. Rev., 40 (5) (2011) 2330-2346.
  • [17] Korkmaz U., Uçar I., Bulut A., Büyükgüngör O., Three Forms of Squaric Acid with Pyrazine and Pyridine Derivatives: An Experimental and Theoretical Study, Structural Chemistry, 22 (2011) 1249-1259.
  • [18] Bulut A., Yesilel O.Z., Dege N., Icbudak H., Olmez H., Büyükgüngör O., Dinicotinamidium Squarate, Acta Crystallographica Section C: Crystal Structure Communications, 59 (12) (2003) o727-o729.
  • [19] Bartoszak-Adamska E., Dega-Szafran Z., Komasa A., Szafran M., Structural and Spectroscopic Properties of Piperidinium-4-Carboxylic Acid Hydrogen Squarate. Vibrational Spectroscopy, 81 (2015) 13-21.
  • [20] Sang Z., Song Q., Cao Z., Deng, Y., Zhang L. Design, Synthesis, and Evaluation of Chalcone-Vitamin E-Donepezil Hybrids as Multi-Target-Directed Ligands for the Treatment of Alzheimer’s Disease, Journal of Enzyme Inhibition and Medicinal Chemistry, 37 (1) (2022) 69-85.
  • [21] Li Q., He S., Chen Y., Feng F., Qu W., Sun, H., Donepezil-Based Multi-Functional Cholinesterase Inhibitors for Treatment of Alzheimer’s Disease, Eur. J. Med. Chem., 158 (2018) 463–77.
  • [22] Unzeta M., Esteban G., Bolea I., Fogel W.A., Ramsay R.R., Youdim M.B., ... & Marco C.J., Multi-Target Directed Donepezil-Like Ligands for Alzheimer’s Disease, Front Neurosci., 10 (2016) 205.
  • [23] Qiang X., Sang Z., Yuan W., Li Y., Liu Q., Bai P., ... & Deng Y., Design, Synthesis and Evaluation of Genistein-O-Alkylbenzylamines as Potential Multi-Functional Agents for the Treatment of Alzheimer’s Disease, Eur. J. Med. Chem., 76 (2014) 314–31.
  • [24] Turgut E., Gungor O., Kirpik H., Kose A., Gungor S.A., Kose M., Benzimidazole Ligands with Allyl, Propargyl or Allene Groups, DNA Binding Properties, and Molecular Docking Studies, Appl. Organometallic Chem., 35 (9) (2021) e6323.
  • [25] Kose A., Gungor O., Ballı J.N., Erkan S., Synthesis, Characterization, Non-Linear Optical and DNA Binding Properties of A Schiff Base Ligand and Its Cu(II) and Zn(II) Complexes, Journal of Molecular Structure, 1268 (2022) 133750.
  • [26] Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity, Biochem. Pharmacol., 7 (2) (1961) 88-95.
  • [27] Liu D., Guo Y., Wu P., Wang Y., Kwaku G.M., Ma H., The Necessity of Walnut Proteolysis Based on Evaluation After in Vitro Simulated Digestion: ACE Inhibition and DPPH Radical-Scavenging Activities, Food Chemistry, 311 (2020) 125960.
  • [28] Gungor O., Kose M., The Biguanide–Sulfonamide Derivatives: Synthesis, Characterization and Investigation of Anticholinesterase Inhibitory, Antioxidant and DNA/BSA Binding Properties, Journal of Biomolecular Structure and Dynamics, 41 (24) (2023) 14952-14567.
  • [29] Catro I., Calatayud M.L., Sletten J., Lloret F., Julve M., Syntheses, Crystal Structure and Magnetic Properties of [Ni2(C4O4)(tren)2][ClO4]2 and [Ni2(C4O4)(tren)2(H2O)2][ClO4]2 (tren=tris(2-amino-ethyl)amine), Journal Chemical Society Dalton Translation, 5 (1997) 811-817.
  • [30] Mondal A., Das D., Chaudhuri N.R., Thermal Studies of Nickel(II) Squarate Complexes of Triamines in The Solid State, Journal of Therma Analysis and Calorimetry, 55 (1999) 165-172.
  • [31] Maji T.K., Das D., Chaudhuri, N.R., Preparation, Characterization, and Solid State Thermal Studies of Cadmium(II) Squarate Complexes of Ethane-1,2-Diamine and Its Derivatives, Journal of Thermal Analysis and Calorimetry, 63 (2001) 617-625.
  • [32] Das D., Ghosh A., Chaudhuri, N.R., Preparation, Characterization, and Solid State Thermal Studies of Nickel(II) Squarate Complexes of 1,2-Ethanediamine and Its Derivatives, Bulletion Chemical Society, Japan, 70 (4) (1997) 789-797.
  • [33] Li N., Ma Y., Yang C., Guo L., Yang X., Interaction of Anticancer Drug Mitoxantrone with DNA Analyzed by Electrochemical and Spectroscopic Methods, Biophysical Chemistry, 116 (3) (2005) 199-205.
  • [34] Chakraborty A., Panda A.K., Ghosh R., Biswas A. DNA Minor Groove Binding of A Well Known Anti-Mycobacterial Drug Dapsone: A Spectroscopic, Viscometric and Molecular Docking Study. Archives of Biochemistry and Biophysics, 665 (2019) 107-113.
  • [35] Madku S.R., Sahoo B.K., Lavanya K., Reddy R.S., Bodapati A.T.S. DNA Binding Studies of Antifungal Drug
Year 2024, Volume: 45 Issue: 2, 216 - 226, 30.06.2024
https://doi.org/10.17776/csj.1414168

Abstract

Project Number

2019/3-21 M

References

  • [1] Carmo C.M., Mendes E., Jesus P.M., Paula F.A., Marco C.J., The Multifactorial Nature of Alzheimer’s Disease for Developing Potential Therapeutics, Curr. Top. Med. Chem., 13 (15) (2013) 1745–1770.
  • [2] Mayeux R., Sano M., Treatment of Alzheimer’s Disease, N. Engl. J. Med., 341 (22) (1999) 1670–1679.
  • [3] George G., Koyiparambath V.P., Sukumaran S., Nair A.S., Pappachan L.K., Al-Sehemi A.G., ... & Mathew B., Structural Modifications on Chalcone Framework for Developing New Class of Cholinesterase Inhibitors, International Journal of Molecular Sciences, 23 (6) (2022) 3121.
  • [4] Agis-Torres A., Sollhuber M., Fernandez M., Sanchez-Montero J., Multi-Targetdirected Ligands and Other Therapeutic Strategies in The Search of A Real Solution for Alzheimer’s Disease, Curr. Neuropharmacol., 12 (1) (2014) 2–36.
  • [5] Svobodova B., Mezeiova E., Hepnarova V., Hrabinova M., Muckova L., Kobrlova T., ... & Korabecny J, Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors, Biomolecules, 9 (8) (2019) 379.
  • [6] Chen P.H., Dong G., Cyclobutenones and Benzocyclobutenones: Versatile Synthons in Organic Synthesis, Chemistry–A European Journal, 22 (51) (2016) 18290-18315.
  • [7] Elliott T.S., Slowey A., Ye Y., Conway S.J., The Use of Phosphate Bioisosteres in Medicinal Chemistry and Chemical Biology, Med. Chem. Comm., 3 (7) (2012) 735-751.
  • [8] Henary M., Cyanine and Squaric Acid Metal Sensors, Sensors and Actuators B: Chemical, 243 (2017) 1191-1204.
  • [9] Tong C., Liu T., Saez T.V., Noteborn W.E.M., Sharp T.H., Hendrix M.M.R.M., Voets I.K., Mummery C.L., Orlova V.V., Kieltyka R.E., Squaramide-Based Supramolecular Materials for Three-Dimensional Cell Culture of Human Induced Pluripotent Stem Cells and Their Derivatives, Biomacromolecules, 19 (4) (2018) 1091-1099.
  • [10] Qian X., Jin C., Zhang X., Jiang Y., Lin C., Wang L., Squaramide Derivatives and Their Applications in Ion Recognition, Prog. Chem., 26 (10) (2014) 1701.
  • [11] Castro I., Calatayud M.L., Sletten J., Julve M., Lloret F., Squarate and Croconate in Designing One-and Two-Dimensional Oxamidato-Bridged Copper (II) Complexes: Synthesis, Crystal Structures and Magnetic Properties of [Cu2(Apox)(C4O4)(H2O)2]N· NaH2O and [Cu4(Apox)2(C5O5)2]· 6H2O. Comptes, Rendus l’Académie Des Sci. IIC-Chemistry, 4 (3) (2001) 235-243.
  • [12] Cheuquepán W., Martínez-Olivares J., Rodes A., Orts J.M., Squaric Acid Adsorption and Oxidation at Gold and Platinum Electrodes, J. Electroanal. Chem., 819 (2018) 178-186.
  • [13] Chasák J., Šlachtová V., Urban M., Brulíková L. Squaric Acid Analogues in Medicinal Chemistry, European Journal of Medicinal Chemistry, 209 (2021) 112872.
  • [14] Olmo F., Rotger C., Ramírez-Macías I., Martínez L., Marín C., Carreras L., Urbanova K., Vega M., Chaves-Lemaur G., Sampedro A., Synthesis and Biological Evaluation of N, N′-Squaramides with High in Vivo Efficacy and Low Toxicity: Toward A Low-Cost Drug Against Chagas Disease, J. Med. Chem., 57 (2014) 987-999.
  • [15] Cui D., Prashar D., Sejwal P., Luk Y.Y., Water-Driven Ligations Using Cyclic Amino Squarates: A Class of Useful SN1-Like Reactions, Chem. Commun., 47 (4) (2011) 1348-1350.
  • [16] Storer R.I., Aciro C., Jones L.H., Squaramides: Physical Properties, Synthesis and Applications, Chem. Soc. Rev., 40 (5) (2011) 2330-2346.
  • [17] Korkmaz U., Uçar I., Bulut A., Büyükgüngör O., Three Forms of Squaric Acid with Pyrazine and Pyridine Derivatives: An Experimental and Theoretical Study, Structural Chemistry, 22 (2011) 1249-1259.
  • [18] Bulut A., Yesilel O.Z., Dege N., Icbudak H., Olmez H., Büyükgüngör O., Dinicotinamidium Squarate, Acta Crystallographica Section C: Crystal Structure Communications, 59 (12) (2003) o727-o729.
  • [19] Bartoszak-Adamska E., Dega-Szafran Z., Komasa A., Szafran M., Structural and Spectroscopic Properties of Piperidinium-4-Carboxylic Acid Hydrogen Squarate. Vibrational Spectroscopy, 81 (2015) 13-21.
  • [20] Sang Z., Song Q., Cao Z., Deng, Y., Zhang L. Design, Synthesis, and Evaluation of Chalcone-Vitamin E-Donepezil Hybrids as Multi-Target-Directed Ligands for the Treatment of Alzheimer’s Disease, Journal of Enzyme Inhibition and Medicinal Chemistry, 37 (1) (2022) 69-85.
  • [21] Li Q., He S., Chen Y., Feng F., Qu W., Sun, H., Donepezil-Based Multi-Functional Cholinesterase Inhibitors for Treatment of Alzheimer’s Disease, Eur. J. Med. Chem., 158 (2018) 463–77.
  • [22] Unzeta M., Esteban G., Bolea I., Fogel W.A., Ramsay R.R., Youdim M.B., ... & Marco C.J., Multi-Target Directed Donepezil-Like Ligands for Alzheimer’s Disease, Front Neurosci., 10 (2016) 205.
  • [23] Qiang X., Sang Z., Yuan W., Li Y., Liu Q., Bai P., ... & Deng Y., Design, Synthesis and Evaluation of Genistein-O-Alkylbenzylamines as Potential Multi-Functional Agents for the Treatment of Alzheimer’s Disease, Eur. J. Med. Chem., 76 (2014) 314–31.
  • [24] Turgut E., Gungor O., Kirpik H., Kose A., Gungor S.A., Kose M., Benzimidazole Ligands with Allyl, Propargyl or Allene Groups, DNA Binding Properties, and Molecular Docking Studies, Appl. Organometallic Chem., 35 (9) (2021) e6323.
  • [25] Kose A., Gungor O., Ballı J.N., Erkan S., Synthesis, Characterization, Non-Linear Optical and DNA Binding Properties of A Schiff Base Ligand and Its Cu(II) and Zn(II) Complexes, Journal of Molecular Structure, 1268 (2022) 133750.
  • [26] Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity, Biochem. Pharmacol., 7 (2) (1961) 88-95.
  • [27] Liu D., Guo Y., Wu P., Wang Y., Kwaku G.M., Ma H., The Necessity of Walnut Proteolysis Based on Evaluation After in Vitro Simulated Digestion: ACE Inhibition and DPPH Radical-Scavenging Activities, Food Chemistry, 311 (2020) 125960.
  • [28] Gungor O., Kose M., The Biguanide–Sulfonamide Derivatives: Synthesis, Characterization and Investigation of Anticholinesterase Inhibitory, Antioxidant and DNA/BSA Binding Properties, Journal of Biomolecular Structure and Dynamics, 41 (24) (2023) 14952-14567.
  • [29] Catro I., Calatayud M.L., Sletten J., Lloret F., Julve M., Syntheses, Crystal Structure and Magnetic Properties of [Ni2(C4O4)(tren)2][ClO4]2 and [Ni2(C4O4)(tren)2(H2O)2][ClO4]2 (tren=tris(2-amino-ethyl)amine), Journal Chemical Society Dalton Translation, 5 (1997) 811-817.
  • [30] Mondal A., Das D., Chaudhuri N.R., Thermal Studies of Nickel(II) Squarate Complexes of Triamines in The Solid State, Journal of Therma Analysis and Calorimetry, 55 (1999) 165-172.
  • [31] Maji T.K., Das D., Chaudhuri, N.R., Preparation, Characterization, and Solid State Thermal Studies of Cadmium(II) Squarate Complexes of Ethane-1,2-Diamine and Its Derivatives, Journal of Thermal Analysis and Calorimetry, 63 (2001) 617-625.
  • [32] Das D., Ghosh A., Chaudhuri, N.R., Preparation, Characterization, and Solid State Thermal Studies of Nickel(II) Squarate Complexes of 1,2-Ethanediamine and Its Derivatives, Bulletion Chemical Society, Japan, 70 (4) (1997) 789-797.
  • [33] Li N., Ma Y., Yang C., Guo L., Yang X., Interaction of Anticancer Drug Mitoxantrone with DNA Analyzed by Electrochemical and Spectroscopic Methods, Biophysical Chemistry, 116 (3) (2005) 199-205.
  • [34] Chakraborty A., Panda A.K., Ghosh R., Biswas A. DNA Minor Groove Binding of A Well Known Anti-Mycobacterial Drug Dapsone: A Spectroscopic, Viscometric and Molecular Docking Study. Archives of Biochemistry and Biophysics, 665 (2019) 107-113.
  • [35] Madku S.R., Sahoo B.K., Lavanya K., Reddy R.S., Bodapati A.T.S. DNA Binding Studies of Antifungal Drug
There are 35 citations in total.

Details

Primary Language English
Subjects Analytical Spectrometry
Journal Section Natural Sciences
Authors

Derya Kılıçaslan 0000-0001-7830-8214

Project Number 2019/3-21 M
Publication Date June 30, 2024
Submission Date January 3, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024Volume: 45 Issue: 2

Cite

APA Kılıçaslan, D. (2024). Donepezil-Squaric Acid Hybrid: Synthesis, Characterization and Investigation of Anticholinesterase Inhibitory, DNA Binding and Antioxidant Properties. Cumhuriyet Science Journal, 45(2), 216-226. https://doi.org/10.17776/csj.1414168