Research Article
BibTex RIS Cite

The Effect of Experimental Cycles on the Traps Depths of Dosimetric Traps of Natural Calcite Minerals

Year 2022, Volume: 43 Issue: 3, 515 - 519, 30.09.2022
https://doi.org/10.17776/csj.1139254

Abstract

A trap found in a solid state radiation dosimetry is characterized by kinetic parameters such as trap depth (Ea), frequency factor (s), kinetic order (b) and carrier concentration (no). Trap depth (Activation energy) is the required energy to release carriers in the trap. In this study, it is investigated that how the dosimetric trap depths of the traps found in the four natural calcite minerals are affected by reusable of them as a dosimeter. All samples were irradiated about 36 Gy beta dose and read out by a thermoluminescence dosimeter (TLD) reader. A computer glow curve deconvulation program (CGCD) was used to get the kinetic parameters. And the results are compared for the four calcite samples.

References

  • [1] Toktamış D., Toktamış H., Yazıcı A. N., The Effects of Thermal Treatments on the Thermoluminescence Properties of Biogenic Minerals Present in the Seashells, Radiation Effects and Defects in Solids, 171 (11–12) (2016) 951–964.
  • [2] Furetta C., Handbook of Thermoluminescence, World Scientific Publishing Co.Pte.Ltd. Singapore, (2003).
  • [3] Abdel-Razek Y.A., Thermoluminescence dosimetry using natural calcite, Journal of Taibah University for Science, 10 (2) (2016) 286-295.
  • [4] Khanlary M.R., Townsend P.D., TL spectra of single crystals and crushed calcite, Nucl. Tracks Radiat. Meas., 18(1-2) (1991) 29-35.
  • [5] Yüksel M., Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terraces, Canadian Journal of Physics, 96 (7) (2018) 779-783.
  • [6] Afouxenidis D., Polymeris G. S., Tsirliganis N.C., Kitis G., Computerised Curve Deconvolution of TL/OSL Curves Using a Popular Spreadsheet Program, Radiation Protection Dosimery, 149 (2012) 363–370.
  • [7] Halperin A., Braner A. A., Evaluation of Thermal Activation Energies from Glow Curves, Physical Review Letters, 117 (1960) 408-415.
  • [8] Horowitz Y. S., Moscovitch M., Computerized Glow Curve Deconvolution Applied to High Dose (102 – 105 Gy) TL Dosimetry, Nuclear Instruments and Methods in Physics Research, A243(1) (1986) 207 – 214.
  • [9] Horowitz Y. S, Moscovitch M., Wilt M., Computerized Glow Curve Deconvolution Applied to Ultralow Dose LiF Thermoluminescence Dosimetry, Nuclear Instruments and Methods in Physics Research, A244 (3) (1986) 556 – 564.
  • [10] Horowitz Y. S., Yossian D., Computerized Glow Curve Deconvolution: The Case of LiF TLD-100, Journal Physics D: Applied Physics, 26(8) (1993) 1331 – 1332.
  • [11] Horowitz Y. S., Yossian D., Computerized Glow Curve Deconvolution: Application to Thermoluminescence Dosimetry, Radiation Protection Dosimetry, 60(1) (1995) 1 – 114.
  • [12] Furetta C., Kitis G., Kuo C.-H., Kinetics Parameters of CVD Diamond by Computerized Glow-curve Deconvolution (CGCD), Nuclear Instruments Methods in Physics Research B: Beam Interactions with Materials and Atoms, 160(1) (2000) 65 – 72.
  • [13] Balian H. G., Eddy N. W., Figure-of-merit (FOM): An Improved Criterion over the Normalized Chi-squared Test for Assessing Goodness-of-fit of Gamma-ray Spectral Peaks, Nuclear Instruments Methods, 145 (1977) 389-395.
  • [14] Kitis G., Chen R., Pagonis V., Carinou E., Ascounis P., Kamenopoulou V., Thermoluminescence under an Exponential Heating Function: II. Glow-curve Deconvolution of Experimental Glow-curves, Journal of Physics D: Applied Physics, 39 (2006) 1508-1514.
  • [15] Toktamış H., Ünsal Ö. L., Toktamış D., A. Necmeddin Yazıcı, Thermoluminescence properties of unique Rosso Levanto marble, Luminescence, 36 (1) (2021) 142-148.
  • [16] Busuoli G., Applied Thermoluminescence Dosimetry, Adam Hilger Ltd Ispra, (1981).
  • [17] Drisoll C. M. H., Barthe J. R., Oberhofer M., Busuoli G., Hickman C., Annealing Procedures for Commonly Used Radiothermoluminescent Materials, Radiation Protection Dosimetry, 14(1) (1986) 17-32
Year 2022, Volume: 43 Issue: 3, 515 - 519, 30.09.2022
https://doi.org/10.17776/csj.1139254

Abstract

References

  • [1] Toktamış D., Toktamış H., Yazıcı A. N., The Effects of Thermal Treatments on the Thermoluminescence Properties of Biogenic Minerals Present in the Seashells, Radiation Effects and Defects in Solids, 171 (11–12) (2016) 951–964.
  • [2] Furetta C., Handbook of Thermoluminescence, World Scientific Publishing Co.Pte.Ltd. Singapore, (2003).
  • [3] Abdel-Razek Y.A., Thermoluminescence dosimetry using natural calcite, Journal of Taibah University for Science, 10 (2) (2016) 286-295.
  • [4] Khanlary M.R., Townsend P.D., TL spectra of single crystals and crushed calcite, Nucl. Tracks Radiat. Meas., 18(1-2) (1991) 29-35.
  • [5] Yüksel M., Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terraces, Canadian Journal of Physics, 96 (7) (2018) 779-783.
  • [6] Afouxenidis D., Polymeris G. S., Tsirliganis N.C., Kitis G., Computerised Curve Deconvolution of TL/OSL Curves Using a Popular Spreadsheet Program, Radiation Protection Dosimery, 149 (2012) 363–370.
  • [7] Halperin A., Braner A. A., Evaluation of Thermal Activation Energies from Glow Curves, Physical Review Letters, 117 (1960) 408-415.
  • [8] Horowitz Y. S., Moscovitch M., Computerized Glow Curve Deconvolution Applied to High Dose (102 – 105 Gy) TL Dosimetry, Nuclear Instruments and Methods in Physics Research, A243(1) (1986) 207 – 214.
  • [9] Horowitz Y. S, Moscovitch M., Wilt M., Computerized Glow Curve Deconvolution Applied to Ultralow Dose LiF Thermoluminescence Dosimetry, Nuclear Instruments and Methods in Physics Research, A244 (3) (1986) 556 – 564.
  • [10] Horowitz Y. S., Yossian D., Computerized Glow Curve Deconvolution: The Case of LiF TLD-100, Journal Physics D: Applied Physics, 26(8) (1993) 1331 – 1332.
  • [11] Horowitz Y. S., Yossian D., Computerized Glow Curve Deconvolution: Application to Thermoluminescence Dosimetry, Radiation Protection Dosimetry, 60(1) (1995) 1 – 114.
  • [12] Furetta C., Kitis G., Kuo C.-H., Kinetics Parameters of CVD Diamond by Computerized Glow-curve Deconvolution (CGCD), Nuclear Instruments Methods in Physics Research B: Beam Interactions with Materials and Atoms, 160(1) (2000) 65 – 72.
  • [13] Balian H. G., Eddy N. W., Figure-of-merit (FOM): An Improved Criterion over the Normalized Chi-squared Test for Assessing Goodness-of-fit of Gamma-ray Spectral Peaks, Nuclear Instruments Methods, 145 (1977) 389-395.
  • [14] Kitis G., Chen R., Pagonis V., Carinou E., Ascounis P., Kamenopoulou V., Thermoluminescence under an Exponential Heating Function: II. Glow-curve Deconvolution of Experimental Glow-curves, Journal of Physics D: Applied Physics, 39 (2006) 1508-1514.
  • [15] Toktamış H., Ünsal Ö. L., Toktamış D., A. Necmeddin Yazıcı, Thermoluminescence properties of unique Rosso Levanto marble, Luminescence, 36 (1) (2021) 142-148.
  • [16] Busuoli G., Applied Thermoluminescence Dosimetry, Adam Hilger Ltd Ispra, (1981).
  • [17] Drisoll C. M. H., Barthe J. R., Oberhofer M., Busuoli G., Hickman C., Annealing Procedures for Commonly Used Radiothermoluminescent Materials, Radiation Protection Dosimetry, 14(1) (1986) 17-32
There are 17 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Dilek Toktamış 0000-0002-0333-1740

Publication Date September 30, 2022
Submission Date July 1, 2022
Acceptance Date July 21, 2022
Published in Issue Year 2022Volume: 43 Issue: 3

Cite

APA Toktamış, D. (2022). The Effect of Experimental Cycles on the Traps Depths of Dosimetric Traps of Natural Calcite Minerals. Cumhuriyet Science Journal, 43(3), 515-519. https://doi.org/10.17776/csj.1139254