Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 43 Sayı: 2, 342 - 345, 29.06.2022
https://doi.org/10.17776/csj.1085357

Öz

Kaynakça

  • [1] Nisoli, C., Moessner R. Schiffer P., Artificial spin ice: Designing and imaging magnetic frustration. Reviews of Modern Physics, 85(4) (2013) 1473.
  • [2] Qi, Y., T. Brintlinger, J. Cumings, Direct observation of the ice rule in an artificial kagome spin ice, Physical Review B, 77(9) (2008) 094418.
  • [3] Elena Mengotti , Laura J. Heyderman, Arantxa Fraile Rodríguez, Frithjof Nolting, Remo V. Hügli Hans-Benjamin Braun, Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice, Nature Physics, 7(1) (2011) 68-74.
  • [4] Jason P. Morgan , Aaron Stein, Sean Langridge and Christopher H. Marrows, Thermal ground-state ordering and elementary excitations in artificial magnetic square ice, Nature Physics, 7(1) (2011) 75-79.
  • [5] Heyderman, L.J. R.L. Stamps, Artificial ferroic systems: novel functionality from structure, interactions and Dynamics, Journal of Physics: Condensed Matter, 25(36) (2013) 363201.
  • [6] Krawczyk, M. Grundler D., Review and prospects of magnonic crystals and devices with reprogrammable band structure, Journal of Physics: Condensed Matter, 26(12) (2014) 123202.
  • [7] Wang R. F, . Nisoli C, Freitas R. Si, Li J., McConville W., Cooley B. J., Lund M. S. , Samarth N., Leighton C., Crespi V. H., Schiffer P., Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands, Nature, 439(7074) (2006) 303-306.
  • [8] Gilbert, I., . Nisoli C, Schiffer P., Frustration by design, Physics Today, 69 (LA-UR-16-22359) (2016).
  • [9] Sklenar J., Bhat V. S., DeLong L. E.,J. Ketterson B., Broadband ferromagnetic resonance studies on an artificial square spin-ice island array, Journal of Applied Physics, 113(17) (2013) 17B530.
  • [10] Sebastian Gliga, Attila Ka´kay, Riccardo Hertel, and Olle G. Heinonen, Spectral analysis of topological defects in an artificial spin-ice lattice, Physical ReviewLletters, 110(11) (2013) 117205.
  • [11] Jungfleisch M. B., Sklenar J., Ding J.,Park J., Pearson J. E., Novosad V., Schiffer P., Hoffmann A., High-frequency dynamics modulated by collective magnetization reversal in artificial spin ice, Physical Review Applied, 8(6) (2017). 064026.
  • [12] Jungfleisch M. B, Zhang WS., Ding J., Jiang W., Sklenar J., Pearson J.E., Ketterson J.B, Hoffmann A., All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect, Applied Physics Letters, 108(5) (2016) 052403.
  • [13] Wang Y. L., Xiao Z. L., Snezhko A., Xu J., Ocola L. E., Divan R., Pearson J. E., Crabtree G. W. Kwok W. K., Rewritable artificial magnetic charge ice, Science, 352(6288) (2016) 962-966.
  • [14] Haldar, A., Kumar D., Adeyeye A.O., A recon Figureurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device, Nature Nanotechnology, 11(5) (2016) 437-443.
  • [15] Kim, S.K., Lee K.-S., Han D.-S., A gigahertz-range spin-wave filter composed of width-modulated nanostrip magnonic-crystal waveguides, Applied Physics Letters, 95(8) (2009) 082507.
  • [16] Zhu, Y., Chi K., Tsai C., Magnonic crystals-based tunable microwave phase shifters, Applied Physics Letters, 105(2) (2014) 022411.
  • [17] Podbielski, J., Giesen F., Grundler D., Spin-wave interference in microscopic rings, Physical Review Letters, 96(16) (2006) 167207.
  • [18] Schneider T., A. SergaA ., Leven B., Hillebrands B., Stamps R. L., Kostylev M. P., Realization of spin-wave logic gate, Applied Physics Letters, 92(2) (2008) 022505.
  • [19] Porro J M, Pinto A.B., A Berger and P Vavassori, Exploring thermally induced states in square artificial spin-ice arrays, New Journal of Physics, 15(5) (2013) 055012.
  • [20] Zhang S., Gilbert I., Nisoli C., Chern G. W., Erickson M. J., O’Brien LK., Leighton C., Lammert P. E., Crespi V. H., Schiffer P., Crystallites of magnetic charges in artificial spin ice, Nature, 500(7464) (201) 553-557.
  • [21] Counil G., Devolder T., Kim J.-V., Crozat P., Chappert C., Zoll S.,Fournel R., Temperature dependences of the resistivity and the ferromagnetic resonance linewidth in permalloy thin films, IEEE transactions on Magnetics, 42(10) (2006) 3323-3325.
  • [22] Cinar I., Aslan O. B., Gokce A., Dincer O., Karakas V., Stipe B., Katine J. A., Aktas G.,Ozatay O., Three dimensional finite element modeling and characterization of intermediate states in single active layer phase change memory devices, Journal of Applied Physics, 117(21) (2015) 214302.
  • [23] Avery A. D., Mason S. J., Bassett D., Wesenberg D., Zink B. L., Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law, Physical Review B, 92(21) (2015) 214410.
  • [24] Holanda J., Santos O. A., Cunha R., O, Mendes J. B. S., Suárez R. L. R., A. Azevedo, and S. M. Rezende, Longitudinal spin Seebeck effect in permalloy separated from the anomalous Nernst effect: Theory and experiment, Physical review B, 95(21) (2017) 214421.
  • [25] Le Guillou, J. Zinn J. J., Critical exponents for the n-vector model in three dimensions from field theory, Physical Review Letters, 39(2) (1977) 95.
  • [26] Fassbender J., Strache T., Liedke M. O., Markó D., Wintz S., Lenz K., Keller A., Facsko S., Mönch I., McCord J., Introducing artificial length scales to tailor magnetic propertiesü, New Journal of Physics, 11(12) (2009) 125002.

Analysis of Magnetization Change with Temperature in an Artificial Spin Ice Network by Three Dimensional Finite Element Modeling

Yıl 2022, Cilt: 43 Sayı: 2, 342 - 345, 29.06.2022
https://doi.org/10.17776/csj.1085357

Öz

A three dimensional finite element model calculation was constructed, which includes different submodels, all as a function of temperature, using an iterative approach, to investigate permalloy artificial spin ice network with square geometry on thermal annealing while applying a voltage pulse. Magnetization is also included into the simulation with an equation defining the change of the magnetization with temperature. The maximum temperature is obtained around the sharp corners due to current crowding, and therefore, minimum magnetization values are observed around the same place, even zero magnetization depending on the applied pulse magnitude and width, because of Curie temperature of permalloy. The aim of this study is to understand the dynamic behavior of the artificial spin ice network according to programming pulse and the importance of the device design to minimize the effect of joule heating.

Kaynakça

  • [1] Nisoli, C., Moessner R. Schiffer P., Artificial spin ice: Designing and imaging magnetic frustration. Reviews of Modern Physics, 85(4) (2013) 1473.
  • [2] Qi, Y., T. Brintlinger, J. Cumings, Direct observation of the ice rule in an artificial kagome spin ice, Physical Review B, 77(9) (2008) 094418.
  • [3] Elena Mengotti , Laura J. Heyderman, Arantxa Fraile Rodríguez, Frithjof Nolting, Remo V. Hügli Hans-Benjamin Braun, Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice, Nature Physics, 7(1) (2011) 68-74.
  • [4] Jason P. Morgan , Aaron Stein, Sean Langridge and Christopher H. Marrows, Thermal ground-state ordering and elementary excitations in artificial magnetic square ice, Nature Physics, 7(1) (2011) 75-79.
  • [5] Heyderman, L.J. R.L. Stamps, Artificial ferroic systems: novel functionality from structure, interactions and Dynamics, Journal of Physics: Condensed Matter, 25(36) (2013) 363201.
  • [6] Krawczyk, M. Grundler D., Review and prospects of magnonic crystals and devices with reprogrammable band structure, Journal of Physics: Condensed Matter, 26(12) (2014) 123202.
  • [7] Wang R. F, . Nisoli C, Freitas R. Si, Li J., McConville W., Cooley B. J., Lund M. S. , Samarth N., Leighton C., Crespi V. H., Schiffer P., Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands, Nature, 439(7074) (2006) 303-306.
  • [8] Gilbert, I., . Nisoli C, Schiffer P., Frustration by design, Physics Today, 69 (LA-UR-16-22359) (2016).
  • [9] Sklenar J., Bhat V. S., DeLong L. E.,J. Ketterson B., Broadband ferromagnetic resonance studies on an artificial square spin-ice island array, Journal of Applied Physics, 113(17) (2013) 17B530.
  • [10] Sebastian Gliga, Attila Ka´kay, Riccardo Hertel, and Olle G. Heinonen, Spectral analysis of topological defects in an artificial spin-ice lattice, Physical ReviewLletters, 110(11) (2013) 117205.
  • [11] Jungfleisch M. B., Sklenar J., Ding J.,Park J., Pearson J. E., Novosad V., Schiffer P., Hoffmann A., High-frequency dynamics modulated by collective magnetization reversal in artificial spin ice, Physical Review Applied, 8(6) (2017). 064026.
  • [12] Jungfleisch M. B, Zhang WS., Ding J., Jiang W., Sklenar J., Pearson J.E., Ketterson J.B, Hoffmann A., All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect, Applied Physics Letters, 108(5) (2016) 052403.
  • [13] Wang Y. L., Xiao Z. L., Snezhko A., Xu J., Ocola L. E., Divan R., Pearson J. E., Crabtree G. W. Kwok W. K., Rewritable artificial magnetic charge ice, Science, 352(6288) (2016) 962-966.
  • [14] Haldar, A., Kumar D., Adeyeye A.O., A recon Figureurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device, Nature Nanotechnology, 11(5) (2016) 437-443.
  • [15] Kim, S.K., Lee K.-S., Han D.-S., A gigahertz-range spin-wave filter composed of width-modulated nanostrip magnonic-crystal waveguides, Applied Physics Letters, 95(8) (2009) 082507.
  • [16] Zhu, Y., Chi K., Tsai C., Magnonic crystals-based tunable microwave phase shifters, Applied Physics Letters, 105(2) (2014) 022411.
  • [17] Podbielski, J., Giesen F., Grundler D., Spin-wave interference in microscopic rings, Physical Review Letters, 96(16) (2006) 167207.
  • [18] Schneider T., A. SergaA ., Leven B., Hillebrands B., Stamps R. L., Kostylev M. P., Realization of spin-wave logic gate, Applied Physics Letters, 92(2) (2008) 022505.
  • [19] Porro J M, Pinto A.B., A Berger and P Vavassori, Exploring thermally induced states in square artificial spin-ice arrays, New Journal of Physics, 15(5) (2013) 055012.
  • [20] Zhang S., Gilbert I., Nisoli C., Chern G. W., Erickson M. J., O’Brien LK., Leighton C., Lammert P. E., Crespi V. H., Schiffer P., Crystallites of magnetic charges in artificial spin ice, Nature, 500(7464) (201) 553-557.
  • [21] Counil G., Devolder T., Kim J.-V., Crozat P., Chappert C., Zoll S.,Fournel R., Temperature dependences of the resistivity and the ferromagnetic resonance linewidth in permalloy thin films, IEEE transactions on Magnetics, 42(10) (2006) 3323-3325.
  • [22] Cinar I., Aslan O. B., Gokce A., Dincer O., Karakas V., Stipe B., Katine J. A., Aktas G.,Ozatay O., Three dimensional finite element modeling and characterization of intermediate states in single active layer phase change memory devices, Journal of Applied Physics, 117(21) (2015) 214302.
  • [23] Avery A. D., Mason S. J., Bassett D., Wesenberg D., Zink B. L., Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law, Physical Review B, 92(21) (2015) 214410.
  • [24] Holanda J., Santos O. A., Cunha R., O, Mendes J. B. S., Suárez R. L. R., A. Azevedo, and S. M. Rezende, Longitudinal spin Seebeck effect in permalloy separated from the anomalous Nernst effect: Theory and experiment, Physical review B, 95(21) (2017) 214421.
  • [25] Le Guillou, J. Zinn J. J., Critical exponents for the n-vector model in three dimensions from field theory, Physical Review Letters, 39(2) (1977) 95.
  • [26] Fassbender J., Strache T., Liedke M. O., Markó D., Wintz S., Lenz K., Keller A., Facsko S., Mönch I., McCord J., Introducing artificial length scales to tailor magnetic propertiesü, New Journal of Physics, 11(12) (2009) 125002.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Natural Sciences
Yazarlar

İbrahim Çinar 0000-0002-0509-913X

Yayımlanma Tarihi 29 Haziran 2022
Gönderilme Tarihi 9 Mart 2022
Kabul Tarihi 20 Mayıs 2022
Yayımlandığı Sayı Yıl 2022Cilt: 43 Sayı: 2

Kaynak Göster

APA Çinar, İ. (2022). Analysis of Magnetization Change with Temperature in an Artificial Spin Ice Network by Three Dimensional Finite Element Modeling. Cumhuriyet Science Journal, 43(2), 342-345. https://doi.org/10.17776/csj.1085357