Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

The Modeling of Radioactive Cobalt Adsorption on Molecular Sieves

Yıl 2022, Cilt 43, Sayı 1, 123 - 125, 30.03.2022
https://doi.org/10.17776/csj.791416

Öz

Radioactive wastes are products of nuclear activities around the world. Radioactive cobalt is one of the usually found radionuclide in nuclear waste. It is crucial to separate radioactive cobalt from aqueous media. The removal of radioactive cobalt (Cobalt-60) was investigated using molecular sieves in this study. The molecular sieves structure comprises of a microporous and aluminosilicate framework. Due to their chemical composition and structures molecular sieves have excellent sorption capacities. The response surface methodology was utilized to constitute the predictive regression model. The experimental minimum and maximum decontamination factor 2.5 and 11.1 was obtained, respectively. The predicted maximum decontamination factor was 10. Molecular sieves present a high adsorbent capacity for the disposal radioactive cobalt from water solution.

Kaynakça

  • [1] Zhong Q.Q., Zhao Y.Q., Shen L., Hao B., Xu X., Gao BY., Shang Y.N., Chu K.Z., Zhang X.H., Yue Q.Y., Single and binary competitive adsorption of cobalt and nickel onto novel magnetic composites derived from green macroalgae, Environ. Eng. Sci., 37(3) (2020) 188-200.
  • [2] Lee H.Y., Kim H.S., Jeong H.K., Park M., Chung D,Y., Lee K.Y., Lee E.H., Lim W.T., Selective removal of radioactive cesium from nuclear waste by zeolites: on the origin of cesium selectivity revealed by systematic crystallographic studies, J. Phys. Chem. C., 121(19) (2017) 10594–10608.
  • [3] Ovhal S., Butler I.S., Xu S., The potential of zeolites to block the uptake of radioactive strontium-90 in organisms, Contemporary Chemistry, 1(1) (2018) 1-13.
  • [4] Sadeghi M., Yekta S., Ghaedi H., Babanezhad E., Effective removal of radioactive 90Sr by CuO NPs/Agclinoptilolite zeolite composite adsorbent from water sample: isotherm. kinetic and thermodynamic reactions study, Int. J. Ind. Chem., 7 (2016) 315–331.
  • [5] Olatunji M.A., Khandakar M.U., Mahmud H.N.M.E., Amin Y.M., Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review, RSC Adv., 5 (2015) 71658-71683.
  • [6] Fang X.H., Fang F., Lu C.H., Zheng L., Removal of Cs. Sr2. and Co2 ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Nucl Eng Technol., 49(3) (2017) 556-561.
  • [7] Handley-Sidhu S., Mullan T.K., Grail Q., Albadarneh M., Ohnuki T., Macaskie L.E., Influence of pH. competing ions and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite, Sci. Rep., 6 (2016) 1-8.
  • [8] Hernfindez-Barrales E., Granados-Correa F., Sorption of radioactive cobalt in natural Mexican clinoptilolite, J. Radioanal. Nucl. Chem., 242(1) (1999) 111- 114.
  • [9] Myers M.J., Lavender J. P., de Oliveira, J. B., Maseri, A., A simplified method of quantitating organ uptake using a gamma camera, Br. J. Radiol., 54(648) (1981) 1062–1067.
  • [10] Munthali M.W., Johan E., Aono H., Matsue N., Cs+and Sr2+adsorption selectivity of zeolites in relation toradioactive decontamination, J. Asian Ceram. Soc., 3(3) (2015) 245-250.
  • [11] Yeritsyan H., Sahakyan A., Harutyunyan V., Nikoghosyan S., Hakhverdyan E., Grigoryan N., Hovhannisyan A., Atoyan V., Keheyan Y., Rhodes C., Radiation-modified natural zeolites for cleaning liquid nuclear waste (irradiation against radioactivity), Sci. Rep., 3 (2013) 2900.
  • [12] Frising T., Leflaive P., Extraframework cation distributions in X and Y faujasite zeolites: a review, Microporous Mesoporous Mater., 114(1–3) (2008) 27–63.
  • [13] Cicek E., Cojocaru C., Zakrzewska-Trznadel G., Harasimowicz M., Miskiewicz A., Response surface methodology for the modeling of 85 Sr adsorption on zeolite 3A and pumice, Environ. Technol., 33(1) (2012) 51–59.
  • [14] Cicek E., Cojocaru C., Zakrzewska-Trznadel G., Jaworska A., Harasimowicz M., Response surface methodology for cobalt removal from aqua solutions using Isparta pumice and zeolite 4A adsorbents, Nukleonika 53(S2) (2008) 121-128.
  • [15] Cicek E., Response surface methodology for cobalt removal from aqua solutions using nevsehir and kayseri pumice adsorbents, Asian J. Chem., 21(7) (2009) 5727-5736.
  • [16] Khayet M., Cojocaru V., Zakrzewska-Trznadel G., Response surface modelling and optimization in pervaporation, J. Membr. Sci., 321 (2008) 272–283.
  • [17] Cojocaru C., Macoveanu M., Modeling and Optimization of Diesel Oil Spill Removal from Water Surface Using Shredded Strips of Polypropylene as the Sorbent, Environ. Eng. Manage. J., 2(2) (2003) 145-154.
  • [18] Le M.H., Behera S.K., Park H.S., Optimization of operational parameters for ethanol production from Korean food waste leachate, Int J Environ Sci Te, 7 (2010) 157–164.
  • [19] Chauhan B., Gupta R., Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14, Process Biochem., 39(12) (2004) 2115–2122.

Yıl 2022, Cilt 43, Sayı 1, 123 - 125, 30.03.2022
https://doi.org/10.17776/csj.791416

Öz

Kaynakça

  • [1] Zhong Q.Q., Zhao Y.Q., Shen L., Hao B., Xu X., Gao BY., Shang Y.N., Chu K.Z., Zhang X.H., Yue Q.Y., Single and binary competitive adsorption of cobalt and nickel onto novel magnetic composites derived from green macroalgae, Environ. Eng. Sci., 37(3) (2020) 188-200.
  • [2] Lee H.Y., Kim H.S., Jeong H.K., Park M., Chung D,Y., Lee K.Y., Lee E.H., Lim W.T., Selective removal of radioactive cesium from nuclear waste by zeolites: on the origin of cesium selectivity revealed by systematic crystallographic studies, J. Phys. Chem. C., 121(19) (2017) 10594–10608.
  • [3] Ovhal S., Butler I.S., Xu S., The potential of zeolites to block the uptake of radioactive strontium-90 in organisms, Contemporary Chemistry, 1(1) (2018) 1-13.
  • [4] Sadeghi M., Yekta S., Ghaedi H., Babanezhad E., Effective removal of radioactive 90Sr by CuO NPs/Agclinoptilolite zeolite composite adsorbent from water sample: isotherm. kinetic and thermodynamic reactions study, Int. J. Ind. Chem., 7 (2016) 315–331.
  • [5] Olatunji M.A., Khandakar M.U., Mahmud H.N.M.E., Amin Y.M., Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review, RSC Adv., 5 (2015) 71658-71683.
  • [6] Fang X.H., Fang F., Lu C.H., Zheng L., Removal of Cs. Sr2. and Co2 ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Nucl Eng Technol., 49(3) (2017) 556-561.
  • [7] Handley-Sidhu S., Mullan T.K., Grail Q., Albadarneh M., Ohnuki T., Macaskie L.E., Influence of pH. competing ions and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite, Sci. Rep., 6 (2016) 1-8.
  • [8] Hernfindez-Barrales E., Granados-Correa F., Sorption of radioactive cobalt in natural Mexican clinoptilolite, J. Radioanal. Nucl. Chem., 242(1) (1999) 111- 114.
  • [9] Myers M.J., Lavender J. P., de Oliveira, J. B., Maseri, A., A simplified method of quantitating organ uptake using a gamma camera, Br. J. Radiol., 54(648) (1981) 1062–1067.
  • [10] Munthali M.W., Johan E., Aono H., Matsue N., Cs+and Sr2+adsorption selectivity of zeolites in relation toradioactive decontamination, J. Asian Ceram. Soc., 3(3) (2015) 245-250.
  • [11] Yeritsyan H., Sahakyan A., Harutyunyan V., Nikoghosyan S., Hakhverdyan E., Grigoryan N., Hovhannisyan A., Atoyan V., Keheyan Y., Rhodes C., Radiation-modified natural zeolites for cleaning liquid nuclear waste (irradiation against radioactivity), Sci. Rep., 3 (2013) 2900.
  • [12] Frising T., Leflaive P., Extraframework cation distributions in X and Y faujasite zeolites: a review, Microporous Mesoporous Mater., 114(1–3) (2008) 27–63.
  • [13] Cicek E., Cojocaru C., Zakrzewska-Trznadel G., Harasimowicz M., Miskiewicz A., Response surface methodology for the modeling of 85 Sr adsorption on zeolite 3A and pumice, Environ. Technol., 33(1) (2012) 51–59.
  • [14] Cicek E., Cojocaru C., Zakrzewska-Trznadel G., Jaworska A., Harasimowicz M., Response surface methodology for cobalt removal from aqua solutions using Isparta pumice and zeolite 4A adsorbents, Nukleonika 53(S2) (2008) 121-128.
  • [15] Cicek E., Response surface methodology for cobalt removal from aqua solutions using nevsehir and kayseri pumice adsorbents, Asian J. Chem., 21(7) (2009) 5727-5736.
  • [16] Khayet M., Cojocaru V., Zakrzewska-Trznadel G., Response surface modelling and optimization in pervaporation, J. Membr. Sci., 321 (2008) 272–283.
  • [17] Cojocaru C., Macoveanu M., Modeling and Optimization of Diesel Oil Spill Removal from Water Surface Using Shredded Strips of Polypropylene as the Sorbent, Environ. Eng. Manage. J., 2(2) (2003) 145-154.
  • [18] Le M.H., Behera S.K., Park H.S., Optimization of operational parameters for ethanol production from Korean food waste leachate, Int J Environ Sci Te, 7 (2010) 157–164.
  • [19] Chauhan B., Gupta R., Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14, Process Biochem., 39(12) (2004) 2115–2122.

Ayrıntılar

Birincil Dil İngilizce
Konular Fizik, Ortak Disiplinler
Bölüm Natural Sciences
Yazarlar

Ekrem ÇİÇEK (Sorumlu Yazar)
MEHMET AKIF ERSOY UNIVERSITY, FACULTY OF SCIENCE AND LETTERS
0000-0001-6724-9423
Türkiye

Yayımlanma Tarihi 30 Mart 2022
Başvuru Tarihi 7 Eylül 2020
Kabul Tarihi 13 Ocak 2022
Yayınlandığı Sayı Yıl 2022, Cilt 43, Sayı 1

Kaynak Göster

APA Çiçek, E. (2022). The Modeling of Radioactive Cobalt Adsorption on Molecular Sieves . Cumhuriyet Science Journal , 43 (1) , 123-125 . DOI: 10.17776/csj.791416