Year 2021,
Volume: 42 Issue: 4, 814 - 821, 29.12.2021
Derya Kızıloluk
,
Gültekin Gökçe
,
Şenay Akkuş Çetinus
References
- [1] Özsöz M., Erdem A., Kara P., Kerman K., Özkan D., Electrochemical biosensor for the detection of interaction between arsenic trioxide and DNA based signal, Electroanal., 15 (7)(2003) 613- 619.
- [2] Wang J., Electrochemical nucleic acid biosensors, Analytica Chimica Acta., 469 (1)(2002) 63-71.
- [3] Elik A., Gökçe G., Bostancı E., Kızıloluk D., Electrochemical Determination of Interaction between Anticancer Drug Epirubicin and DNA by DNA Biosensors, Cumhuriyet Sci. J., 38(3) (2017) 525-534.
- [4] Kızıloluk D., Gökçe G., Akkuş Çetinus Ş., Electrochemical Determination of the Interaction between Anticancer Drug Capecitabine and DNA by Carbon Paste Electrode, Journal of Scientific Perspectives, 4(1) (2020) 1-12.
- [5] Wang J., Rivas G., Cai X., Palecek E., Nielsen P., Shiraishi H., Dontha N., Luo D., Parrado C., Chicharro M., Farias PAM., Valera FS., Grant DH., Özsöz M., Flair MN., DNA electrochemical biosensors for environmental monitoring. A Review, Anal. Chim. Acta, 347(1-2) (1997) 1-8.
- [6] Erdem A., A Review: Nanomaterial-based electrochemical DNA sensing strategies, Talanta, 74(3) (2007) 318-325.
- [7] Nawaz H., Rauf S., Akthar K., Khalid A.M., Electrochemical DNA biosensor for the study of ciprofloxacin–DNA interaction, Analytical Biochemistry, 354(1) (2006) 28–34.
- [8] Kuralay F., Erdem A., Abacı S., Ozyoruk H., Yildiz A., Characterization of redox polymer based electrode and electrochemical behavior for DNA detection, Analytica Chimica Acta., 643(1-2) (2009) 83-89.
- [9] Karadeniz H., Erdem A., Calıskan A., Pereira C. M., Pereira E. M., Ribiero. J.A., Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes, Electrochem. Commun., 9(9) (2007) 2167-2173.
- [10] Yan F., Erdem A., Meric B., Kerman. K., Özsöz M., Sadik O.A., Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species, Electrochemistry Communications, 3(5) (2001) 224-228.
- [11] Wang. J., Rıvas G., Fernandes J. R., Jıang M., Paz. J.L.L., Waymıre R., Nıelsen T.W., Getts R.C., Adsorption and detection of DNA dendrimers at carbon electrodes, Electroanal., 10(8) (1998) 553-556.
- [12] Mikkelsen S. R., Electrochemical biosensors for DNA sequence detection- a review, Electroanal., 8(1) (1996) 15-19.
- [13] Rauf S., Goodıng J.J, Akthar K., Ghaurı M.A, Rahman M., Anwar M.A., Khalıd A.M., Electrochemical approach of anticancer drugs–DNA interaction, Journal of Pharmaceutical and Biomedical Analysis, 37(2) (2005) 205–217.
- [14] Palecek E., From Polarography of DNA to Microanalysis with Nucleic Acid Modified Electrodes, Electroanal, 8(1) (1996) 7-14.
- [15] Wang L., Lın L., Ye B., Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA, Journal of Pharmaceutical and Biomedical Analysis, 42(5) (2006) 625–629.
- [16] Erdem A., Kerman K., Meriç B., Akarca U.S., Özsöz M., DNA Electrochemical biosensor fort he detection of short DNA sequences related to the hepatitis B virüs, Elektroanal., 11(8) (1999) 586-587
Electrochemical investigation of DNA and Capecitabine interaction using glassy carbon electrode (GCE)
Year 2021,
Volume: 42 Issue: 4, 814 - 821, 29.12.2021
Derya Kızıloluk
,
Gültekin Gökçe
,
Şenay Akkuş Çetinus
Abstract
In recent years, studies with biosensors have increased in order to better understand the mechanisms of anticancer drug action. Thus, studies to examine interactions with DNA using biosensors have gained momentum. In our study, it was investigated that Capecitabine (CPT), an anticancer drug, and glassy carbon electrode (GCE) interaction by using electrochemical methods. The interaction of CPT with calf thymus DNAs (dsDNA, ssDNA) immobilized on the electrode surface was analyzed by exploiting changes in the oxidation signals of the guanine base. The immobilization of DNA on the electrode surface has been optimized. Optimal DNA concentration and optimal interaction times were found. Electrochemical impedance spectroscopy technique was used for impedimetric measurements.
The results obtained confirmed that the ct-DNAs were immobilized on the electrode surface. Detection limit (DL) was found as 17.54 μg / mL for interaction capecitabine with ds-DNA and was found 17.12 μg / mL for interaction capecitabine with ss-DNA.
References
- [1] Özsöz M., Erdem A., Kara P., Kerman K., Özkan D., Electrochemical biosensor for the detection of interaction between arsenic trioxide and DNA based signal, Electroanal., 15 (7)(2003) 613- 619.
- [2] Wang J., Electrochemical nucleic acid biosensors, Analytica Chimica Acta., 469 (1)(2002) 63-71.
- [3] Elik A., Gökçe G., Bostancı E., Kızıloluk D., Electrochemical Determination of Interaction between Anticancer Drug Epirubicin and DNA by DNA Biosensors, Cumhuriyet Sci. J., 38(3) (2017) 525-534.
- [4] Kızıloluk D., Gökçe G., Akkuş Çetinus Ş., Electrochemical Determination of the Interaction between Anticancer Drug Capecitabine and DNA by Carbon Paste Electrode, Journal of Scientific Perspectives, 4(1) (2020) 1-12.
- [5] Wang J., Rivas G., Cai X., Palecek E., Nielsen P., Shiraishi H., Dontha N., Luo D., Parrado C., Chicharro M., Farias PAM., Valera FS., Grant DH., Özsöz M., Flair MN., DNA electrochemical biosensors for environmental monitoring. A Review, Anal. Chim. Acta, 347(1-2) (1997) 1-8.
- [6] Erdem A., A Review: Nanomaterial-based electrochemical DNA sensing strategies, Talanta, 74(3) (2007) 318-325.
- [7] Nawaz H., Rauf S., Akthar K., Khalid A.M., Electrochemical DNA biosensor for the study of ciprofloxacin–DNA interaction, Analytical Biochemistry, 354(1) (2006) 28–34.
- [8] Kuralay F., Erdem A., Abacı S., Ozyoruk H., Yildiz A., Characterization of redox polymer based electrode and electrochemical behavior for DNA detection, Analytica Chimica Acta., 643(1-2) (2009) 83-89.
- [9] Karadeniz H., Erdem A., Calıskan A., Pereira C. M., Pereira E. M., Ribiero. J.A., Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes, Electrochem. Commun., 9(9) (2007) 2167-2173.
- [10] Yan F., Erdem A., Meric B., Kerman. K., Özsöz M., Sadik O.A., Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species, Electrochemistry Communications, 3(5) (2001) 224-228.
- [11] Wang. J., Rıvas G., Fernandes J. R., Jıang M., Paz. J.L.L., Waymıre R., Nıelsen T.W., Getts R.C., Adsorption and detection of DNA dendrimers at carbon electrodes, Electroanal., 10(8) (1998) 553-556.
- [12] Mikkelsen S. R., Electrochemical biosensors for DNA sequence detection- a review, Electroanal., 8(1) (1996) 15-19.
- [13] Rauf S., Goodıng J.J, Akthar K., Ghaurı M.A, Rahman M., Anwar M.A., Khalıd A.M., Electrochemical approach of anticancer drugs–DNA interaction, Journal of Pharmaceutical and Biomedical Analysis, 37(2) (2005) 205–217.
- [14] Palecek E., From Polarography of DNA to Microanalysis with Nucleic Acid Modified Electrodes, Electroanal, 8(1) (1996) 7-14.
- [15] Wang L., Lın L., Ye B., Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA, Journal of Pharmaceutical and Biomedical Analysis, 42(5) (2006) 625–629.
- [16] Erdem A., Kerman K., Meriç B., Akarca U.S., Özsöz M., DNA Electrochemical biosensor fort he detection of short DNA sequences related to the hepatitis B virüs, Elektroanal., 11(8) (1999) 586-587