Research Article
BibTex RIS Cite
Year 2021, Volume: 42 Issue: 3, 728 - 734, 24.09.2021
https://doi.org/10.17776/csj.892438

Abstract

References

  • [1] Guth A. H., The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23 (1981) 347-356.
  • [2] Linde A. D., A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett., 108B (1982) 389-393.
  • [3] Albrecht A., Steinhardt P. J., Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett., 48 (1982) 1220-1223.
  • [4] Linde A. D., Chaotic Inflation, Phys. Lett., 129B (1983) 177-181.
  • [5] Martin J., Ringeval C., Vennin V., Encyclopædia Inflationaris, Phys. Dark Univ., 5-6 (2014) 75-235, arXiv:1303.3787.
  • [6] Aghanim N. et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641 (2020) A6, arXiv:1807.06209.
  • [7] Akrami Y. et al. [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641 (2020) A10, arXiv:1807.06211.
  • [8] Ade P. A. R. et al. [BICEP2 and Keck Array Collaborations], BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season, Phys. Rev. Lett., 121 (2018) 221301, arXiv:1810.05216.
  • [9] Callan, Jr. C. G., Coleman S. R., Jackiw R., A New improved energy-momentum tensor, Annals Phys., 59 (1970) 42-73.
  • [10] Bezrukov F., Magnin A., Shaposhnikov M., Sibiryakov S., Higgs inflation: consistency and generalisations, JHEP, 1101 (2011) 016, arXiv:1008.5157.
  • [11] Bostan N., Güleryüz Ö., Şenoğuz V. N., Inflationary predictions of double-well, Coleman-Weinberg, and hilltop potentials with non-minimal coupling, JCAP, 1805 no. 05 (2018) 046, arXiv:1802.04160.
  • [12] Bezrukov F. L., Shaposhnikov M., The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659 (2008) 703-706, arXiv:0710.3755.
  • [13] Kallosh R., Linde A., Roest D., Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett., 112 no. 1 (2014) 011303, arXiv:1310.3950.
  • [14] Bauer F., Demir D. A., Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations, Phys. Lett. B, 665 (2008) 222-226, arXiv:0803.2664.
  • [15] Padmanabhan T., Holographic gravity and the surface term in the Einstein-Hilbert action, Braz. J. Phys., 35 (2005) 362-372, arXiv:gr-qc/0412068.
  • [16] Palatini A., Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rendiconti del Circolo Matematico di Palermo (1884-1940), 43(1) (1919) 203-212.
  • [17] York, Jr J. W., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett., 28 (1972) 1082-1085.
  • [18] Tenkanen T., Resurrecting Quadratic Inflation with a non-minimal coupling to gravity, JCAP, 1712 no. 12 (2017) 001, arXiv:1710.02758.
  • [19] Rasanen S., Wahlman P., Higgs inflation with loop corrections in the Palatini formulation, JCAP, 1711 no. 11 (2017) 047, arXiv:1709.07853.
  • [20] Rubio J., Tomberg E. S., Preheating in Palatini Higgs inflation, JCAP, 1904 (2019) 021.
  • [21] Fu C., Wu P., Yu H., Inflationary dynamics and preheating of the nonminimally coupled inflaton field in the metric and Palatini formalisms, Phys. Rev. D, 96 no. 10 (2017) 103542, arXiv:1801.04089.
  • [22] Marzola L., Racioppi A., Raidal M., Urban F. R., Veermäe H., Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly, JHEP, 1603 (2016) 190, arXiv:1512.09136.
  • [23] Marzola L., Racioppi A., Minimal but non-minimal inflation and electroweak symmetry breaking, JCAP, 1610 no. 10 (2016) 010, arXiv:1606.06887.
  • [24] Dimopoulos K., Owen C., Racioppi A., Loop inflection-point inflation, Astropart. Phys., 103 (2018) 16-20, arXiv:1706.09735.
  • [25] Kannike K., Racioppi A., Raidal M., Linear inflation from quartic potential, JHEP, 1601 (2016) 035, arXiv:1509.05423.
  • [26] Fujii Y., Maeda K., The scalar-tensor theory of gravitation, Cambridge, UK: Cambridge University Press, (2007).
  • [27] Lyth D. H., Liddle A. R., The primordial density perturbation: Cosmology, inflation and the origin of structure, Cambridge, UK: Cambridge Univ. Pr., (2009).
  • [28] Linde A., Noorbala M., Westphal A., Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP, 1103 (2011) 013, arXiv:1101.2652.
  • [29] Husdal L., On Effective Degrees of Freedom in the Early Universe, Galaxies, 4 no. 4 (2016) 78, arXiv:1609.04979.
  • [30] Gialamas I. D., Lahanas A. B., Reheating in R2 Palatini inflationary models, Phys. Rev. D, 101 no. 8 (2020) 084007, arXiv:1911.11513.
  • [31] Coleman S. R., Weinberg E. J., Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D, 7 (1973) 1888-1910.
  • [32] Enqvist K., Karciauskas M., Does Planck really rule out monomial inflation?, JCAP, 1402 (2014) 034, arXiv:1312.5944.
  • [33] Weinberg E. J., Radiative corrections as the origin of spontaneous symmetry breaking, Ph.D. Thesis, Harvard University, Department of Physics, April 1973, arXiv: hep-th/0507214, arXiv:1005.5161.
  • [34] Okada N., Rehman M. U., Shafi Q., Tensor to Scalar Ratio in Non-Minimal ϕ4 Inflation, Phys. Rev. D, 82 (2010) 043502, arXiv:1005.5161.
  • [35] De Simone A., Hertzberg M. P., Wilczek F., Running Inflation in the Standard Model, Phys. Lett. B, 678 (2009) 1-8, arXiv:0812.4946.
  • [36] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C., Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP, 0912 (2009) 003, arXiv:0904.1698.
  • [37] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C. F., Higgs boson, renormalization group, and naturalness in cosmology, Eur. Phys. J. C, 72 (2012) 2219, arXiv:0910.1041.
  • [38] M. Remazeilles et al. [CORE Collaboration], Exploring cosmic origins with CORE: B-mode component separation, JCAP, 1804 no. 04 (2018) 023, arXiv:1704.04501.

Preheating in radiatively corrected φ4 inflation with non-minimal coupling in Palatini formulation

Year 2021, Volume: 42 Issue: 3, 728 - 734, 24.09.2021
https://doi.org/10.17776/csj.892438

Abstract

We discuss the impact of the preheating stage due to the interaction of the inflaton to fermions in Palatini formulation. In Palatini inflation with large non-minimal coupling, the field is allowed to return to the plateau region during the reheating stage, therefore the average equation of state per oscillations is closer to -1 rather than 1\/3. The incursion in the plateau, however, leads to a highly efficient tachyonic instability, which is able to reheat the Universe in less than one e-fold. By taking prescription II into account, which is discussed in the literature, we calculate the spectral index n_s and the tensor-to-scalar ratio r in the wide range of κ- ξ. We will show the results which are compatible with the data given by the Keck Array/BICEP2 and Planck collaborations.

References

  • [1] Guth A. H., The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23 (1981) 347-356.
  • [2] Linde A. D., A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett., 108B (1982) 389-393.
  • [3] Albrecht A., Steinhardt P. J., Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett., 48 (1982) 1220-1223.
  • [4] Linde A. D., Chaotic Inflation, Phys. Lett., 129B (1983) 177-181.
  • [5] Martin J., Ringeval C., Vennin V., Encyclopædia Inflationaris, Phys. Dark Univ., 5-6 (2014) 75-235, arXiv:1303.3787.
  • [6] Aghanim N. et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641 (2020) A6, arXiv:1807.06209.
  • [7] Akrami Y. et al. [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641 (2020) A10, arXiv:1807.06211.
  • [8] Ade P. A. R. et al. [BICEP2 and Keck Array Collaborations], BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season, Phys. Rev. Lett., 121 (2018) 221301, arXiv:1810.05216.
  • [9] Callan, Jr. C. G., Coleman S. R., Jackiw R., A New improved energy-momentum tensor, Annals Phys., 59 (1970) 42-73.
  • [10] Bezrukov F., Magnin A., Shaposhnikov M., Sibiryakov S., Higgs inflation: consistency and generalisations, JHEP, 1101 (2011) 016, arXiv:1008.5157.
  • [11] Bostan N., Güleryüz Ö., Şenoğuz V. N., Inflationary predictions of double-well, Coleman-Weinberg, and hilltop potentials with non-minimal coupling, JCAP, 1805 no. 05 (2018) 046, arXiv:1802.04160.
  • [12] Bezrukov F. L., Shaposhnikov M., The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659 (2008) 703-706, arXiv:0710.3755.
  • [13] Kallosh R., Linde A., Roest D., Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett., 112 no. 1 (2014) 011303, arXiv:1310.3950.
  • [14] Bauer F., Demir D. A., Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations, Phys. Lett. B, 665 (2008) 222-226, arXiv:0803.2664.
  • [15] Padmanabhan T., Holographic gravity and the surface term in the Einstein-Hilbert action, Braz. J. Phys., 35 (2005) 362-372, arXiv:gr-qc/0412068.
  • [16] Palatini A., Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rendiconti del Circolo Matematico di Palermo (1884-1940), 43(1) (1919) 203-212.
  • [17] York, Jr J. W., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett., 28 (1972) 1082-1085.
  • [18] Tenkanen T., Resurrecting Quadratic Inflation with a non-minimal coupling to gravity, JCAP, 1712 no. 12 (2017) 001, arXiv:1710.02758.
  • [19] Rasanen S., Wahlman P., Higgs inflation with loop corrections in the Palatini formulation, JCAP, 1711 no. 11 (2017) 047, arXiv:1709.07853.
  • [20] Rubio J., Tomberg E. S., Preheating in Palatini Higgs inflation, JCAP, 1904 (2019) 021.
  • [21] Fu C., Wu P., Yu H., Inflationary dynamics and preheating of the nonminimally coupled inflaton field in the metric and Palatini formalisms, Phys. Rev. D, 96 no. 10 (2017) 103542, arXiv:1801.04089.
  • [22] Marzola L., Racioppi A., Raidal M., Urban F. R., Veermäe H., Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly, JHEP, 1603 (2016) 190, arXiv:1512.09136.
  • [23] Marzola L., Racioppi A., Minimal but non-minimal inflation and electroweak symmetry breaking, JCAP, 1610 no. 10 (2016) 010, arXiv:1606.06887.
  • [24] Dimopoulos K., Owen C., Racioppi A., Loop inflection-point inflation, Astropart. Phys., 103 (2018) 16-20, arXiv:1706.09735.
  • [25] Kannike K., Racioppi A., Raidal M., Linear inflation from quartic potential, JHEP, 1601 (2016) 035, arXiv:1509.05423.
  • [26] Fujii Y., Maeda K., The scalar-tensor theory of gravitation, Cambridge, UK: Cambridge University Press, (2007).
  • [27] Lyth D. H., Liddle A. R., The primordial density perturbation: Cosmology, inflation and the origin of structure, Cambridge, UK: Cambridge Univ. Pr., (2009).
  • [28] Linde A., Noorbala M., Westphal A., Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP, 1103 (2011) 013, arXiv:1101.2652.
  • [29] Husdal L., On Effective Degrees of Freedom in the Early Universe, Galaxies, 4 no. 4 (2016) 78, arXiv:1609.04979.
  • [30] Gialamas I. D., Lahanas A. B., Reheating in R2 Palatini inflationary models, Phys. Rev. D, 101 no. 8 (2020) 084007, arXiv:1911.11513.
  • [31] Coleman S. R., Weinberg E. J., Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D, 7 (1973) 1888-1910.
  • [32] Enqvist K., Karciauskas M., Does Planck really rule out monomial inflation?, JCAP, 1402 (2014) 034, arXiv:1312.5944.
  • [33] Weinberg E. J., Radiative corrections as the origin of spontaneous symmetry breaking, Ph.D. Thesis, Harvard University, Department of Physics, April 1973, arXiv: hep-th/0507214, arXiv:1005.5161.
  • [34] Okada N., Rehman M. U., Shafi Q., Tensor to Scalar Ratio in Non-Minimal ϕ4 Inflation, Phys. Rev. D, 82 (2010) 043502, arXiv:1005.5161.
  • [35] De Simone A., Hertzberg M. P., Wilczek F., Running Inflation in the Standard Model, Phys. Lett. B, 678 (2009) 1-8, arXiv:0812.4946.
  • [36] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C., Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP, 0912 (2009) 003, arXiv:0904.1698.
  • [37] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C. F., Higgs boson, renormalization group, and naturalness in cosmology, Eur. Phys. J. C, 72 (2012) 2219, arXiv:0910.1041.
  • [38] M. Remazeilles et al. [CORE Collaboration], Exploring cosmic origins with CORE: B-mode component separation, JCAP, 1804 no. 04 (2018) 023, arXiv:1704.04501.
There are 38 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Nilay Bostan 0000-0002-1129-4345

Publication Date September 24, 2021
Submission Date March 7, 2021
Acceptance Date July 20, 2021
Published in Issue Year 2021Volume: 42 Issue: 3

Cite

APA Bostan, N. (2021). Preheating in radiatively corrected φ4 inflation with non-minimal coupling in Palatini formulation. Cumhuriyet Science Journal, 42(3), 728-734. https://doi.org/10.17776/csj.892438