Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 42 Sayı: 2, 321 - 326, 30.06.2021
https://doi.org/10.17776/csj.745918

Öz

Kaynakça

  • [1] Kosan M. T., Lero A., Matczuk J. UJ rings, Commun. Algebra, 46 (5) (2018) 2297-2303.
  • [2] Nicholson W.K., Lifting idempotent and exchange rings, Trans. Amer. Math. Soc., 229 (1977) 269-278.
  • [3] Nicholso W.K., Zhou Y., Clean general rings, J. Algebra, 291 (2005) 297-311.
  • [4] Lam T.Y., A First Course in Noncommutative Rings, GTM 131, 2nd ed. Verlag: Springer, (1991) 53-82.
  • [5] Haghany A., Hopficity and co-hopficity for Morita contexts, Commun. Algebra, 27 (1999) 477-492.
  • [6] Kosan M. T., The p.p. property of trivial extensions, J. Algebra Appl., 14 (8) (2015) 1550124.
  • [7] Nicholson W.K., Zhou Y., Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J., 46 (2004) 227-236.

Remarks on the group of unıts of a corner ring

Yıl 2021, Cilt: 42 Sayı: 2, 321 - 326, 30.06.2021
https://doi.org/10.17776/csj.745918

Öz

The aim of this study is to characterize rings having the following properties for a non-trivial idempotent element e of R, U (eRe) = e + eJ(R)e = e + J (eRe) (and U (eRe) = e + N (eRe)),
where U (-), N (-) and J (-) denote the group of units, the set of all nilpotent elements and the Jacobson radical of R, respectively. In the present paper, some characterizations are also obtained in terms of every element is of the form e + u, where e2 = e ∈ R and u ∈ U(eRe).

Kaynakça

  • [1] Kosan M. T., Lero A., Matczuk J. UJ rings, Commun. Algebra, 46 (5) (2018) 2297-2303.
  • [2] Nicholson W.K., Lifting idempotent and exchange rings, Trans. Amer. Math. Soc., 229 (1977) 269-278.
  • [3] Nicholso W.K., Zhou Y., Clean general rings, J. Algebra, 291 (2005) 297-311.
  • [4] Lam T.Y., A First Course in Noncommutative Rings, GTM 131, 2nd ed. Verlag: Springer, (1991) 53-82.
  • [5] Haghany A., Hopficity and co-hopficity for Morita contexts, Commun. Algebra, 27 (1999) 477-492.
  • [6] Kosan M. T., The p.p. property of trivial extensions, J. Algebra Appl., 14 (8) (2015) 1550124.
  • [7] Nicholson W.K., Zhou Y., Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J., 46 (2004) 227-236.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Natural Sciences
Yazarlar

Tülay Yıldırım 0000-0001-5933-9752

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 3 Haziran 2020
Kabul Tarihi 12 Şubat 2021
Yayımlandığı Sayı Yıl 2021Cilt: 42 Sayı: 2

Kaynak Göster

APA Yıldırım, T. (2021). Remarks on the group of unıts of a corner ring. Cumhuriyet Science Journal, 42(2), 321-326. https://doi.org/10.17776/csj.745918