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 Abstract  

The aim of this study is to characterize rings having the following properties for a non-trivial 

idempotent element e of R, U (eRe) = e + eJ(R)e = e + J (eRe) (and U (eRe) = e + N (eRe)), 
where U (-), N (-) and J (-) denote the group of units, the set of all nilpotent elements and the 

Jacobson radical of R, respectively. In the present paper, some characterizations are also 

obtained in terms of every element is of the form e + u, where e2 = e ∈ R and u ∈ U(eRe). 
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1. Introduction   

Throughout the paper all rings considered are 

associative and unital. For a ring R, the Jacobson 
radical, the group of units and the set of all nilpotent 

elements are denoted by J(R), U (R) and N (R), 
respectively. 

One always has 1 + J(R) ⊆ U (R). In [1], authors 

defined a ring to be UJ if it satisfies the above property 

as two sided, that is a ring R is a U J-ring if 1 + J(R) = 

U (R) and also they showed that the problem of lifting 
the U J property from a ring R to the polynomial ring 

R[x] is equivalent to the Köthe’s problem for F2-

algebras.  They also proved that if e is an idempotent 

element and R is U J-ring then the corner rings eRe and 
(1 - e) R (1 - e) are also U J. But the converse is true 

with an additional property that eR(1-e), (1-e)Re ⊆ 

J(R). 

One can see easily that e (1 + J(R)) e ⊆ eU (R)e for e2 

= e ∈ R since 1 + J(R) is always contained in U (R). 

So it makes sense to think about the equality as 
following:  

 U (eRe) = e + eJ(R)e = e + J(eRe).                       (1)                                         

Every U J-ring satisfies this property. Also, we give 
examples and some characterizations and basic 

properties of rings having this property. For example, 

a ring R satisfies this property iff U (eRe / J(eRe)) = 

{e}, and the ring   ∏i∈I Ri satisfies this property if and 

only if each ring Ri satisfies this property, for all i ∈ I.  

Recall that a ring is called semilocal if R / J(R) is a 
semisimple ring. It is also shown that a semilocal ring 

R satisfies the (1)-property if and only if eRe / J(eRe) ≌ 

F2 ⅹ     . . .   ⅹ F2. 

The behavior of this property under some classical ring 

constructions is studied. In particular, it is proved that 

if the polynomial ring R[x] satisfies this property, then 
R satisfies this property and J(eRe) is a nil ideal of eRe. 

It is also shown that Morita context satisfies this 
property. 

An element is called clean if it can be written as a sum 

of an idempotent and a unit. A ring is called clean if 

each of its element is clean. Clean rings were firstly 
introduced by Nicholson [2]. Several people work on 

this subject and investigate properties of clean rings, 

for example see [3]. Rings for which every element is 
a sum of an element from the Jacobson radical and an 

idempotent is called J-clean. We obtain that: (1) R 

satisfies the (1)-property iff all clean elements of eRe 

are J-clean, (2) eRe is a clean ring and R satisfies the 
(1)-property if and only if eRe / J(eRe) is a Boolean 

ring and idempotents lift modulo J(eRe) iff eRe is a J-
clean ring. 

As a clean element representation of a ring, we can 

consider the following: Let R be a ring and a be a non-
unit element of R. We say that a is of the form (*) if a 

= e + u, where e2 = e ∈ R and u ∈ U (eRe).  It is easy 

to see that an element a of a ring R is of the form (*) if 
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and only if it is quasi-regular, and an element of a ring 

is of the form (*) is clean. Hence we also obtain that 
every element ( ≠ 1) of a ring R has the form e + u, 

where e2 = e ∈ R and u ∈ U (eRe) if and only if R is 

a division ring. 

2. The Results 

We begin with the following well known facts / notions 
will be referred to several times. 

Remark 1.1. For any idempotent element e of a ring 
R, 

1. J(eRe) = {exe ∈ eRe: e − exeye ∈ U (eRe), ∀ 

eye ∈ eRe}. 

2. N(eRe) = {exe ∈ eRe : (exe)n = 0,  for some n ∈ 

ℤ+ }. 

3.   U(eRe) ⊆ eU (R)e for e2 = e ∈ R. 

4.   U( ∏i∈I eRie ) = ∏i∈I U (eRie), where  

 

            U ( ∏i∈I eRie ) = { ∏i ∈ I exie is unit where exie 

∈ eRie }, and 

  

            ∏i∈I ( U (eRie)) = { ∏i∈I exie : exie ∈ eRie is 

unit for every i ∈ I } 

 

5. J ( ∏i∈ I eRie ) = ∏i∈ I J(eRie). 

We consider the following property (1): 

A ring R satisfies (1) if for any idempotent element e 
of R, U (eRe) = e + eJ(R)e = e + J(eRe). 

Example 1.2. Every U J-ring satisfies the (1)-property 

by [1, Proposition 2.7]. Furthermore, if R is a U J-ring, 
then eU(R)e = U (eRe). 

Given a ring R, we define an operation ◦ on R, called 

quasi-multiplication, by a ◦ b = a + b − ab. It is easy to 
see that (R, ◦) is a monoid with identity element 0. An 

element a ∈ R is called quasi-regular if it is invertible 

in (R, ◦), i.e., if there exists a` ∈ R such that a ◦ a` = 0 

= a’ ◦ a. In this case we say that a’ is the quasi-inverse 

of a.  If R is unital then this is equivalent to 1 − a ∈ U 

(R). The set of all quasi-regular elements of R will be 
denoted by Q(R). Clearly, (Q(R), ◦) is a group since this 

is just the group of invertible elements of the monoid 
(R, ◦). 

Theorem 1.3. Every element (≠ 1) of a ring R is quasi-
regular if and only if R is a division ring. 

Proof: Suppose that 0, 1 ≠ a is an arbitrary element of 

R.  Since (1 – a) is a unit then   there exists 1 ≠ u ∈ U 

(R) such that (1 - a) u = 1. Therefore, we have (-au) = 

(1 - u).  By assumption, 1-u is a unit element and hence 
a = -(1 - u)(1 - a) is a unit element. Hence, R is a 
division ring. The converse is clear. 

Remark 1.4:  If ere is a quasi-regular element of eRe 
then r is quasi-regular element of R by Remark 1.1. 

Proposition 1.5. For a ring R and any non-trivial 

idempotent e ∈ R, the following conditions are 

equivalent:  

1.  U (eRe) = e + J(eRe), i.e., R satisfies the (1)-
property. 

2.  U (eRe / J(eRe)) = {e}. 

3.  Q(eRe) is an ideal of eRe (then Q(eRe) = J(eRe)). 

4.  erebe − ecere ∈ J(eRe) for any ere ∈ eRe and ebe, 

ece ∈ Q(eRe). 

5.  ereue − evere ∈ J(eRe) for any eue, eve ∈ U (eRe) 

and ere ∈ eRe. 

6.  U (eRe) + U (eRe) ⊆ J(eRe) (then U (eRe) + U 

(eRe) = J(eRe)). 

Proof: (1)⇒(2) If we take eRe / J(eRe) instead of eRe 

in (1), then we get U (eRe/J(eRe)) =e + J(eRe/J(eRe)) 
= e, as desired. 

(1)⇒(3) Let exe ∈ Q(eRe). Then e − exe ∈ U (eRe), 

and so there exists an element eue ∈ U (eRe) such that 

e − exe = eue which gives exe = e − eue, where eue ∈ 

U (eRe) = (e + J(eRe)). Hence there exists eje ∈ 

J(eRe) such that eue = e + eje. Since exe = e − eue = 

e − (e + eje) = eje ∈ J(eRe), we get Q(eRe) ⊆ J(eRe). 

But by the definition we have J(eRe) ⊆ Q(eRe) so we 

are done. 

(2)⇒(1) Clearly e + J(eRe) ⊆ U (eRe). For the 

converse, first we prove the following claim: 

Claim: [U (eRe) + J(eRe)] / J(eRe) = U (eRe / J(eRe)): 

Let exe+J(eRe) ∈ U (eRe / J(eRe)). By the hypothesis, 

we have U (eRe / J(eRe)) = {e} and so exe + J(eRe) = 

e which gives e − exe ∈ J(eRe).  By Remark 1.1, one 

obtains exe ∈ U (eRe) and so exe + J(eRe) ∈ 

[U(eRe)+J(eRe)] / J(eRe). For the converse, let 

exe+J(eRe) ∈ [U (eRe)+J(eRe)] / J(eRe).  
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Since exe is invertible, there exists eye ∈ eRe such that 

exeye = eyexe = e. The equation (exe + J(eRe))(eye + 

J(eRe)) = exeye + J(eRe) = e + J(eRe) implies exe + 

J(eRe) ∈ U (eRe / J(eRe)). Now for the converse, let 

exe ∈ U (eRe). By the Claim, exe+J(eRe) ∈ U 

(eRe)/J(eRe) ={e}.  Therefore exe + eje = e for all eje 

∈ J(eRe) which implies exe = e − eje ∈ e + J(eRe). 

(3)⇒(4) Since Q(eRe) is an ideal of eRe, we get erebe 

− ece ∈ Q(eRe) for ebe, ece ∈ Q(eRe) and exe ∈ eRe. 

Hence Q(eRe) = J(eRe) implies erebe-ece ∈ J(eRe). 

(4)⇒(5) Setting ece = e - eue and  ebe = e - eve for 

eue, eve ∈ U(eRe), we get ebe, ece ∈Q(eRe). The rest 

follows from (4). 

(5)⇒(6) If we take ere = e in (5), then eue − eve ∈ 

J(eRe), for any eue, eve ∈ U (eRe) which gives U 

(eRe) + U (eRe) ⊆ J(eRe). Hence, every ere ∈ J(eRe) 

can be written as a sum of two invertible element as ere 

= e + (ere − e) ∈ U (eRe) + U (eRe). 

(6)⇒(1) Clearly e + J(eRe) ⊆ U (eRe). Using (6), we 

get U (eRe) − e ⊆ J(eRe), i.e. U (eRe) ⊆ e + J(eRe) 

which completes the proof. 

Remark 1.6. For e = 1, one has [1, Lemma 1.1]. 

In the following observation, we collect some basic 
properties of rings having the (1)- property. 

Proposition 1.7. Assume that a ring R satisfies the (1)-

property for any non-trivial idempotent element e of R. 
Then: 

1.  2e ∈ J(eRe); 

2.  If eRe is a division ring, then eRe = K2 ≌ F2 where 

K2 = {0, e}; 

3.  eRe / J(eRe) is reduced (i.e., it has no nonzero 

nilpotent elements) and hence abelian (i.e., every 
idempotent is central); 

4.  If exe, eye ∈ eRe are such that exeye ∈ J(eRe), 

then eyexe ∈ J(eRe) and exeReye, eyeRexe ∈ 

J(eRe); 

5.  Let I ⊆ J(eRe) be an ideal of eRe. Then R 

satisfies (1)-property if and only if 
     R / I satisfies (1)-property; 

6.  eRe is Dedekind finite; 

7. The ring ∏i ∈ I Ri satisfies the (1)-property if and 

only rings Ri satisfy the (1)- property for all i ∈ I. 

Proof: (1) By Proposition 1.5 (6), we have U (eRe) + 

U (eRe) = J(eRe). So e + e = 2e ∈ J(eRe). 

(2) If eRe is a division ring, then every nonzero element 

of eRe has an inverse and also U (eRe) = e + J(eRe), 

by Proposition 1.5(1). Therefore e + J(eRe) ∈ eRe / 

J(eRe) is an only element which has an inverse. By 
Proposition 1.5(2), U (eRe / J(eRe)) = {e}. 

(3) For a nilpotent element ere + J(eRe) in eRe / J(eRe), 

we shall show that ere ∈ J(eRe). There exits n ∈ N 

such that (𝑒𝑟𝑒)𝑛 + J(eRe) = J(eRe). Then 

e + J(eRe) = [( (ere)n ) + J(eRe)] + (e + J(eRe)) 

                 = ((ere)n + e) + J(eRe) 

                 = ((ere) + e)((-1)n-1 (ere)n-1 + . . . + (-
1)2 (ere)2 - ere + 1) + J(eRe) 

                 = [((ere) + e) + J(eRe)][((1)n-1 (ere)n-1 + . . 
. + (-1)2 (ere)2 - ere +1)+J(eRe)]. 

By Proposition 1.5(2), (ere + e) + J(eRe) ∈ U (eRe / 

J(eRe)). So there exists eje ∈ J(eRe) such that (ere + 

e) + eje = e, that is ere = -eje ∈ J(eRe).  Hence it has 

no nonzero nilpotent elements. 

(4) Let exeye ∈ J(eRe). Then exeye + J(eRe) = J(eRe). 

After multiplying the equation by eye +J (eRe) (on the 

left and by exe +J(eRe) on the right, we get eyexeyexe 

+J(eRe) = (eyexe)2 + J(eRe) = J(eRe). By (3), eRe / 
J(eRe) is reduced and so eyexe + J(eRe) = J(eRe). 

Hence eyexe ∈ J(eRe). The rest follows from (3). 

(5) Let I ⊆ J(eRe). Then J(eRe) / I = J(eRe / I). Indeed, 

clearly, J(eRe) / I ⊆ J(eRe / I). For the converse, let 

exe + I ∈ J(eRe / I). Then (e − exeye) + I is a unit of 

eRe / I for every eye ∈ eRe. Hence e − exeye is a unit 

for every eye ∈ eRe which implies that exe ∈ J(eRe). 

Now exe + I ∈ J(eRe) + I and 
𝑒𝑅𝑒/𝐼 

𝐽(𝑒𝑅𝑒/𝐼)
 = 

𝑒𝑅𝑒/𝐼

𝐽(𝑒𝑅𝑒)/𝐼
 = eRe 

/ J(eRe). The rest follows from Proposition 1.5(2). 

(6) eRe / J(eRe) is Dedekind finite since it is reduced. 

Let exeye = e for exe, eye ∈ eRe. Then exeye +J(eRe) 

= e + J(eRe) but eRe / J(eRe) is Dedekind finite so 
eyexe+J(eRe) = e + J(eRe) that is eyexe is invertible. 
Clearly eyexe is an idempotent so eyexe = e. 

(7) This follows from Remark 1.1.  
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Remark 1.8. For e = 1, one has [1, Proposition 1.3] 

Proposition 1.9. A semilocal ring R satisfies the (1)-

property if and only if eRe / J(eRe) ≌ F2 × . . . × F2. 

Proof. Since eRe / J(eRe) is semisimple by the 

definition and reduced by Proposition 1.7(3), so eRe / 
J(eRe) is a finite direct product of division ring. But it 
is isomorphic to F2 by Proposition 1.7(2).  

We focus on some algebraic constructions of rings 
having the (1)-property. 

Proposition 1.10. If a ring R satisfies the (1)-property 

and S is a subring of R such that U (eSe) = U (eRe) ∩ 
eSe, then S also satisfies the (1)-property. 

Proof. Since U (eSe) = U (eRe) ∩ eSe, we also have 

J(eRe) ∩ eSe ⊆ J(eSe). Thus, using U (eRe) = e + 

J(eRe) we get  

e + J(eSe) ⊆ U (eSe) = U (eRe) ∩ eSe = (e + J(eRe)) 

∩ eSe = e + (J(eRe) ∩ eSe) ⊆ e + J(eSe). 

Therefore U (eSe) = e + J(eSe). We consider the 
following property (2): 

A ring R satisfies (2) if for any non-trivial idempotent 
element e of R, U (eRe) = e + N (eRe). 

Lemma 1.11. Let e be a non-trivial idempotent and 

eRe be a ring such that its unit element is only e. Then 
U (eRe [X]) = {e}, where eRe[X] denotes the 

polynomial ring in the set X of commuting 
indeterminates.  

Proof. Since being a unit in eRe[X] is a local property, 

i.e., depends only on finitely many indeterminates, we 

may assume that X is a finite set. By assumption U 
(eRe) = {e}, so eRe does not contain non-trivial 

nilpotent elements, i.e., it is a reduced ring. [1, 

Corollary 1.7] characterizes reduced rings as rings such 
that U (eRe[x]) = U (eRe) and the thesis follows easily. 

Let us recall that a ring R is 2-primal if its prime radical 
B(R) coincides with the set of all its nilpotent elements. 

Proposition 1.12. Let R be a 2-primal having the (2)-
property. Then, for any set X of commuting 

indeterminates, the polynomial ring R[X] satisfies the 
(1)-property. 

Proof. It is known that B(eRe[X]) = B(eRe)[X] (cf.[4, 

Theorem 10.19]). Thus the assumptions imposed on R 

and Lemma 1.11 imply that the ring eRe[X] / B(eRe[X]) 

≌ (eRe / B(eRe))[X] has trivial units. Now, by 

Proposition 1.7(5), R[X] satisfies the (1)-property. 

Proposition 1.13. If the polynomial ring R[x] satisfies 

the (1)-property, then R satisfies the (1)-property and 
J(eRe) is a nil ideal of eRe. 

Proof. It is known that J eRe[x]) = I[x] for some nil 

ideal I of eRe.  Thus, as R[x] satisfies the (1)-property, 

we have e + J(eRe) ⊆ U (eRe[x]) = e + J(eRe[x]) = e 

+ I[x].  This implies that J(eRe) = I is nil.  As R[x] 
satisfies the (1)-property, then {e} = U (eRe[x] / 

J(eRe[x])) = U ((eRe / J(eRe)[X]). Hence also U (eRe / 
J(eRe)) = {e}, i.e.  R satisfies the (1)-property. 

A Morita context is a 4-tuple (
𝑅 𝑀
𝑁 𝑆

), where R, S are 

rings, RMS and SNR are bimodules, and there exist 

context products M ×N  → R and N × M  → S written 

multiplicatively as (x, y) → xy and (y, x) → yx, such 

that (
𝑅 𝑀
𝑁 𝑆

) is an associative ring with the obvious 

matrix operations. A Morita context (
𝑅 𝑀
𝑁 𝑆

) is called 

trivial if the context products are trivial, i.e., MN = 0 

and NM = 0. A trivial Morita context is also called the 

ring of a Morita context with zero pairings in [5].  A 

trivial Morita context (
𝑅 𝑀
𝑁 𝑆

) with N = 0 is 

commonly called a formal triangular matrix ring. 
Given a ring R and a bimodule V over R, we can easily 

see that {  (
𝑎 𝑣
0 𝑎

) ∶ 𝑎 ∈ 𝑅, 𝑣 ∈  𝑉  }   is a subring of 

the formal triangular matrix ring (
𝑅 𝑉
0 𝑅

), and this 

subring is the just trivial extension of R by V. By [6, 

Lemma 2], trivial Morita contexts (in particular, formal 

triangular matrix rings) are special cases of trivial 
extensions. 

Theorem 1.14. Let (eRe, eVf, fWe, f Sf ) be a Morita 

context and T := (
𝑒𝑅𝑒 𝑒𝑉𝑓
𝑓𝑊𝑒 𝑓𝑆𝑓

) where e and f are non-

trivial idempotents. The following conditions are 
equivalent: 

1. T satisfies the (1)- property for an idempotent E = 

(
𝑒𝑅 0
0 𝑓𝑆

) , where e and f are non-trivial 

idempotents. 

2. R satisfies the (1)- property for an idempotent e, S 

satisfies the (1)- property for an idempotent f and 

eV fWe ⊆ J(eRe), WV ⊆ J(fSf). 

3. R satisfies the (1)- property for an idempotent e, S 

satisfies the (1)- property for an idempotent f and 

T / J(ETE) ≌ eRe / J(eRe) ⊕ f Sf / J (fSf). 

Proof: (1)⇒(2) Suppose T satisfies the (1)- property for 

an idempotent E=(
𝑒𝑅 0
0 𝑓𝑆

) where e and f are non-

trivial idempotents. Hence ETE / J(ETE) has no 

nonzero nilpotent elements. Let (
0 𝑒𝑉𝑓
0 0

), 



Yıldırım/ Cumhuriyet Sci. J., 42(2) (2021) 321-326 
 

 
 

325 

 

(
0 0

𝑓𝑊𝑒 0
) ⊆ J(ETE) = (

𝐽(𝑒𝑅𝑒) 𝐵

𝐶 𝐽(𝑓𝑆𝑓)
), where B

 = {evf  : f W evf  ⊆ J(f Sf )} = {evf  : evf W e 

⊆ J(eRe)}, and C = {f we : f weV f  ⊆ J(f Sf )}= {f we 

: eV fwe ⊆ J(eRe). 

Clearly, B = eVf and C = f We. We have also obtain 

that B = eVf, C = f We, eVfWe ⊆ J(eRe), f WeV f ⊆ J(f 

Sf ) and ETE / J(ETE) ≌ eRe / J(eRe) ⊕ f Sf / J(f Sf ). 

Since T satisfies the (1)-property for an idempotent E, 

we get U (ETE / J(ETE)) = {E}. 

We also know that U (ETE / J(ET E)) ≌ U (eRe / J(eRe)) 

⊕ U (f Sf / J(f Sf )) which implies R satisfies the (1)-

property for an idempotent e, and S satisfies the (1)-
property for an idempotent f.        

(2)⇒(3) It is clear by the fact that B = eVf and C = f 

We. 

(3)⇒(1) It is a consequence of Proposition 1.5.   

Recall that an element r ∈ R is clean (J-clean) 

provided there exist an idempotent e ∈ R and an 

element t ∈ U(R) (t ∈ J(R)) such that r = e + t. A ring 

R is clean (J-clean) if every element of R has such clean 

(J-clean) decomposition. It is known that every J-clean 

ring is clean (in fact if -r = e + j is a J-clean 

decomposition of -r ∈ R, then r = (1 − e) + (−1 − j) 

is a clean decomposition of r.   
Proposition 1.15. For a ring R, the following 

conditions are equivalent: 

1. R satisfies the (1)-property. 
2. All clean elements of eRe are J-clean.  

Proof: (1)⇒(2) Assume that r ∈ R is a clean element 

of eRe and r = f + u is its clean decomposition  for f ∈ 

Id(eRe) and u ∈ U (eRe). Then r = f + u + e - e + f - f 

=  (2f + u - e) + (e - f ). 

Claim 1. (e - f ) is an idempotent element of eRe: 
Indeed, (e - f )2 = e - f since ef = f and f e = f. 

Claim 2. 2f ∈ J(eRe): By Proposition 1.7, 2f ∈ J(f Rf 

) = f J(R)f = exeJ(R)exe ⊆ eJ(R)e = J(eRe). Also by 

Proposition 1.5, u – e ∈ J(eRe) and so one obtains 2f 

+ u – e ∈ J(eRe). 

(2)⇒(1) Let e2 =  e ∈ R and u ∈ U (eRe). Then u is a 

clean element of eRe and, by the hypothesis, u is J-

clean. Let u = f + j be a J-clean decomposition of u. 

Since e = fu-1 + ju-1, we obtain that f u-1 = e ju-1 is a unit 

of eRe. Hence, e = f. This means that u = f + j = e + j 

and U (eRe) = e + J(eRe) as desired. 
Theorem 1.16. For a ring R and for any idempotent e 

∈ R, the following conditions are equivalent: 

1.  eRe is a clean ring and R satisfies the (1)-property. 

2.  eRe / J(eRe) is a Boolean ring and idempotents lift 

modulo J(eRe). 
3.  eRe is a J-clean ring and R satisfies the (1)-property. 

4.  eRe is a J-clean ring. 

Proof: (1)⇒(2) By the assumptions, eRe / J(eRe) is a 

clean ring such that U (eRe) = {e}. In particular, 2e = 

0 in (eRe / J(eRe)) and every element r ∈ eRe / J(eRe) 

is of the form r = f + e, for a suitable idempotent f. 

Hence r2 = r, i.e., eRe / J(eRe) is Boolean.  By (cf.[7, 
Lemma 17]), idempotents lift modulo every ideal I of 

a clean ring R, which gives (2). 

(2)⇒(3) Suppose (2) holds and let a ∈ eRe. Then a + 

J(eRe) ∈ eRe / J(eRe) is idempotent. Hence, there 

exists an idempotent f ∈ eRe such that a − f ∈ J(eRe), 

i.e. a is a J-clean element. This shows that eRe is J-

clean. If u ∈ U (eRe), then u + J(eRe) is a unit in a 

Boolean ring eRe / J(eRe). Thus u − e ∈ J(eRe), so 

satisfies the (1)-property. 

(3)⇒(4) Trivial. 

(4)⇒(1) This follows from Proposition 1.15. 

Let us continue on a clean decomposition for a non-

unit element of a ring.        

Lemma 1.17. For a non-unit element a of ring R, the 
following conditions are equivalent: 

1. a = e + u (and eu = ue), where e2 = e ∈ R 

and u ∈ U (eRe);  

2. a ∈ 1 + U (R) (and u ∈ Z(U (R))). 

Proof: Assume that a non-unit element a of ring R is of 

the form e + u, where e2 = e ∈ R and u ∈ U (eRe). It 

is easy to check (or well known) that U (eRe) = eRe ∩ 

((1 - e) + U (R)), where e2 = e ∈ R.  Hence u = (1 - e) 

+ v for some v ∈ U (R).  Now, a = e + (1- e) + v = 1 + 

v ∈ 1 + U (R), as desired. 

 Now assume that a non-unit element a of ring R is of 

the form e + u and eu = ue, where e2 = e ∈ R and u ∈ 

U(eRe). Then au = eu + u2 and ua = ue + u2 which 

imply au = ua. Since a ∈ 1 + U (R), we write a = 1 + 
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v for some v ∈ U (R).  Hence au = u(1+v) and ua = 

(1+v)u that implies uv = vu. 

 

Corollary 1.18. An element a of ring R is of the form 
(*) if and only if it is quasi-regular. 

Example 1.19. 1. An element a of ring R is of the form 
(*) is clean. 

2. It is well known that the units, idempotents, and 

quasi-regular elements of any ring are clean, but units 

and idempotents are not of the form (*). 

3.Any element Z2 is of the form (*). Consider its matrix 

ring M(Z2). The set of units of M(Z2) is                       

U(M(Z2)) = { (
1 0
0 1

), (
0 1
1 0

), (
0 1
1 1

), (
1 0
1 1

), 

(
1 1
1 0

), (
1 1
0 1

)  }. 

Consider the non-unit element a = (
1 1
0 0

) ∈ M(Z2). 

Then, there is no unit in U(M(Z2)) such that a ∈ 1+ 

U(M(Z2)). 

Remark 1.20. We should remind the reader that 1 ∈ 

R never has the form e + u, where e2 = e ∈ R and u ∈ 

U (eRe). To see this, 

1.  If e = 1 then we conclude that u = 0.  By assumption, 

0 = u ∈ U (1R1) = U (R) is a unit element that is 

impossible. 

2.  If e = 0 then we conclude that u = 1. By assumption, 

1 - u ∈ U (0R0) = 0 that is impossible. 

3.  If e ≠ 0, 1 then 1- e = u and we conclude that 1 - e 

is a unit element of eRe while is a zero-divisor of eRe 
and that is a contradiction. 

Corollary 1.21. Let R be a ring in which every element 

( ≠ 1) of R  has the form e + u,  where e2 = e ∈ R and 

u ∈ U (eRe). Then Id(R) = {0, 1}. 

Proof: We claim that R has the only trivial idempotents. 
To see this, let e ≠ 0, 1 be an idempotent of R. By 

Lemma 1.17, since e is a non-unit element, there exists 

u ∈ U (R) in which e = 1 + u.  Hence, we have -u = 1 

- e.  It is clear that 1 - e is a zero divisor thus u is a zero-

divisor that is a contradiction. Therefore, R has the only 
trivial idempotents. 

Corollary 1.22. Every element (≠ 1) of a ring R has the 

form e + u, where e2 = e ∈ R and u ∈ U (eRe) if and 

only if R is a division ring. 

Proof. By Corollary 1.21, R has only trivial 

idempotents. Hence every element of R has either the 

form 0 + u where u ∈ U (0R0) (that is impossible) or 

the form 1 + u where u ∈ U (1R1) = U (R). Therefore, 

every element (≠ 1) of R has the form 1 + u where u ∈ 

U (R). Hence every element (≠ 1) of R is quasi-regular 

and we conclude that R is a division ring by Lemma 
1.3. 

The converse is clear. 
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