[1] Fast H., Sur la Convergence Statistique, Colloq. Math., 2 (1951) 241-244.
[2] Steinhaus H., Sur la Convergence Ordinaire et la Convergence Asymtotique, Colloq. Math., 2 (1951) 73-74.
[3] Gadjiev A. D., Orhan C., Some Approximation Theorems via Statistical Convergence, Rocky Mountain J. Math., 32 (2002) 129-138.
[4] Korovkin P. P., Linear Operators and Approximation Theory. Delhi: Hindustan Publ. Co., (1960).
[5] Belen C., Yıldırım M., Generalized A-Statistical Convergence and a Korovkin Type Approximation Theorem for Double Sequences, Miskolc Mathematical Notes, 14 (1) (2013) 31-39.
[6] Demirci K., Dirik F., Four-Dimensional Matrix Transformation and Rate of A-Statistical Convergence of Periodic Functions, Math. Comput. Modelling, 52 (9-10) (2010) 1858-1866.
[7] Dirik F., Demirci K., Korovkin Type Approximation Theorem for Functions of Two Variables in Statistical Sense, Turk J Math, 34 (2010) 73-83.
[8] Ünver M., Orhan C., Statistical Convergence with Respect to Power Series Methods and Applications to Approximation Theory, Numerical Functional Analysis and Optimization, 40 (5) (2019) 535-547.
[9] Moore E. H., An Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven, (1910).
[10] Chittenden E. W., On the Limit Functions of Sequences of Continuous Functions Converging Relatively Uniformly, Transactions of the AMS, 20 (1919) 179-184.
[11] Demirci K., Orhan S., Statistically Relatively Uniform Convergence of Positive Linear Operators, Results Math., 69 (2016) 359-367.
[12] Demirci K., Kolay B., A-Statistical Relative Modular Convergence of Positive Linear Operators, Positivity, 21 (3) (2017) 847-863.
[13] Demirci K., Orhan S., Kolay B., Relative Hemen Hemen Yakınsaklık ve Yaklaşım Teoremleri, Sinop Üniversitesi Fen Bilimleri Dergisi, 1 (2) (2016) 114-122.
[14] Demirci K., Yıldız S., Statistical Relative Uniform Convergence in Dually Residuated Lattice Totally Ordered Semigroups, Sarajevo J. Math., 15 (2) (2019) 227-237.
[15] Sahin P. O., Dirik F., Statistical Relative Uniform Convergence of Double Sequences of Positive Linear Operators, Appl. Math. E-Notes, 17 (2017) 207-220.
[16] Sahin P. O., Dirik F., Statistical Relative Equal Convergence of Double Function Sequences and Korovkin-Type Approximation Theorem, Applied Mathematics E-Notes, 19 (2019) 101-115.
[17] Yılmaz B., Demirci K., Orhan S., Relative Modular Convergence of Positive Linear Operators, Positivity, 20 (3) (2016) 565-577.
[18] Klippert J., Williams G., Uniform Convergence of a Sequence of Functions at a Point, Internat. J. Math. Ed. Sci. Tech., 33 (1) (2002) 51-58.
[19] Demirci K., Boccuto A., Yıldız S., Dirik F., Relative Uniform Convergence of a Sequence of Functions at a Point and Korovkin-Type Approximation Theorems, Positivity, 24 (1) (2020) 1-11.
[20] Boccuto A., Demirci K., Yıldız S., Abstract Korovkin-type theorems in the filter setting with respect to relative uniform convergence, Turkish Journal of Mathematics, 44 (4) (2020) 1238-1249.
[21] Dirik F., Demirci K., Yıldız S., Acu A. M., The Uniform Convergence of a Double Sequence of Functions at a Point and Korovkin-Type Approximation Theorems, Georgian Mathematical Journal, 1 (ahead-of-print) (2020)
[22] Pringsheim A., Zur Theorie der Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1) (1900) 289-321.
In the present paper, we introduce a new kind of convergence, called the statistical relative uniform convergence, for a double sequence of functions at a point, where the relative uniform convergence of the set of the neighborhoods of the given point is considered. By the use of the statistical relative uniform convergence, we investigate a Korovkin type approximation theorem which makes the proposed method stronger than the ones studied before. After that, we give an example using this new type of convergence. We also study the rate of convergence of the proposed convergence.
[1] Fast H., Sur la Convergence Statistique, Colloq. Math., 2 (1951) 241-244.
[2] Steinhaus H., Sur la Convergence Ordinaire et la Convergence Asymtotique, Colloq. Math., 2 (1951) 73-74.
[3] Gadjiev A. D., Orhan C., Some Approximation Theorems via Statistical Convergence, Rocky Mountain J. Math., 32 (2002) 129-138.
[4] Korovkin P. P., Linear Operators and Approximation Theory. Delhi: Hindustan Publ. Co., (1960).
[5] Belen C., Yıldırım M., Generalized A-Statistical Convergence and a Korovkin Type Approximation Theorem for Double Sequences, Miskolc Mathematical Notes, 14 (1) (2013) 31-39.
[6] Demirci K., Dirik F., Four-Dimensional Matrix Transformation and Rate of A-Statistical Convergence of Periodic Functions, Math. Comput. Modelling, 52 (9-10) (2010) 1858-1866.
[7] Dirik F., Demirci K., Korovkin Type Approximation Theorem for Functions of Two Variables in Statistical Sense, Turk J Math, 34 (2010) 73-83.
[8] Ünver M., Orhan C., Statistical Convergence with Respect to Power Series Methods and Applications to Approximation Theory, Numerical Functional Analysis and Optimization, 40 (5) (2019) 535-547.
[9] Moore E. H., An Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven, (1910).
[10] Chittenden E. W., On the Limit Functions of Sequences of Continuous Functions Converging Relatively Uniformly, Transactions of the AMS, 20 (1919) 179-184.
[11] Demirci K., Orhan S., Statistically Relatively Uniform Convergence of Positive Linear Operators, Results Math., 69 (2016) 359-367.
[12] Demirci K., Kolay B., A-Statistical Relative Modular Convergence of Positive Linear Operators, Positivity, 21 (3) (2017) 847-863.
[13] Demirci K., Orhan S., Kolay B., Relative Hemen Hemen Yakınsaklık ve Yaklaşım Teoremleri, Sinop Üniversitesi Fen Bilimleri Dergisi, 1 (2) (2016) 114-122.
[14] Demirci K., Yıldız S., Statistical Relative Uniform Convergence in Dually Residuated Lattice Totally Ordered Semigroups, Sarajevo J. Math., 15 (2) (2019) 227-237.
[15] Sahin P. O., Dirik F., Statistical Relative Uniform Convergence of Double Sequences of Positive Linear Operators, Appl. Math. E-Notes, 17 (2017) 207-220.
[16] Sahin P. O., Dirik F., Statistical Relative Equal Convergence of Double Function Sequences and Korovkin-Type Approximation Theorem, Applied Mathematics E-Notes, 19 (2019) 101-115.
[17] Yılmaz B., Demirci K., Orhan S., Relative Modular Convergence of Positive Linear Operators, Positivity, 20 (3) (2016) 565-577.
[18] Klippert J., Williams G., Uniform Convergence of a Sequence of Functions at a Point, Internat. J. Math. Ed. Sci. Tech., 33 (1) (2002) 51-58.
[19] Demirci K., Boccuto A., Yıldız S., Dirik F., Relative Uniform Convergence of a Sequence of Functions at a Point and Korovkin-Type Approximation Theorems, Positivity, 24 (1) (2020) 1-11.
[20] Boccuto A., Demirci K., Yıldız S., Abstract Korovkin-type theorems in the filter setting with respect to relative uniform convergence, Turkish Journal of Mathematics, 44 (4) (2020) 1238-1249.
[21] Dirik F., Demirci K., Yıldız S., Acu A. M., The Uniform Convergence of a Double Sequence of Functions at a Point and Korovkin-Type Approximation Theorems, Georgian Mathematical Journal, 1 (ahead-of-print) (2020)
[22] Pringsheim A., Zur Theorie der Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1) (1900) 289-321.
Yıldız, S. (2021). Statistical relative uniform convergence of a double sequence of functions at a point and applications to approximation theory. Cumhuriyet Science Journal, 42(1), 123-131. https://doi.org/10.17776/csj.831339