Araştırma Makalesi
BibTex RIS Kaynak Göster

Equality of internal angles and vertex points in conformal hyperbolic triangles

Yıl 2020, Cilt: 41 Sayı: 3, 642 - 650, 30.09.2020
https://doi.org/10.17776/csj.719117

Öz

In this article, by using the conformal structure in Euclidean space, the conformal structures in hyperbolic space and the equality of the internal angles and vertex points of conformal triangles in hyperbolic space are given. Especially in these special conformal triangles, the conformal hyperbolic equilateral triangle and the conformal hyperbolic isosceles triangle, the internal angles and vertices are shown.

Kaynakça

  • Asmus, I., Duality Between Hyperbolic and de-Sitter Geometry, Cornell University, New York, (2008) 1-32.
  • O’neil, B., Semi-Riemannian Geometry, Academic Press., London, (1983) 46-49, 54-57, 108-114, 143-144.
  • Suarez-Peiro, E., A Schlafli Differential Formula for Implices in Semi-Riemannian Hyperquadrics, Gauss-Bonnet Formulas for Simplices in the de Sitter Sphere and the Dual Volume of a Hyperbolic Simplex, Pasicif Journal of Mathematics, 194(1) (2000) 229.
  • Karlığa, B., Edge matrix of hyperbolic simplices, Geom. Dedicata, 109 (2004) 1–6.
  • Karlığa, B., Yakut, A.T., Vertex angles of a simplex in hyperbolic space , Geom. Dedicata, 120 (2006) 49-58.
  • Alsan, Ö., Conformal Triangles, M.Sc. Thesis, Kastamonu University Institute of Science and Technology, Kastamonu 2015.
  • Karlığa, B., Savaş, M., “Field Formulas Based on Edge Lengths of Hyperbolic and Spherical Triangles”, Seminar of Mathematics Deparment, Gazi University, Ankara, (2006) 1-6.
  • Ratcliffe, J.G., “Foundations of Hyperbolic Manifolds”, Springer-Verlag, Berlin, (1994).
  • Tokeşer, Ü., “Triangles in Spherical Hyperbolic and de-Sitter Planes”, Ph.D. Thesis, Gazi University Institute of Science and Technology, Ankara 2013.
Yıl 2020, Cilt: 41 Sayı: 3, 642 - 650, 30.09.2020
https://doi.org/10.17776/csj.719117

Öz

Kaynakça

  • Asmus, I., Duality Between Hyperbolic and de-Sitter Geometry, Cornell University, New York, (2008) 1-32.
  • O’neil, B., Semi-Riemannian Geometry, Academic Press., London, (1983) 46-49, 54-57, 108-114, 143-144.
  • Suarez-Peiro, E., A Schlafli Differential Formula for Implices in Semi-Riemannian Hyperquadrics, Gauss-Bonnet Formulas for Simplices in the de Sitter Sphere and the Dual Volume of a Hyperbolic Simplex, Pasicif Journal of Mathematics, 194(1) (2000) 229.
  • Karlığa, B., Edge matrix of hyperbolic simplices, Geom. Dedicata, 109 (2004) 1–6.
  • Karlığa, B., Yakut, A.T., Vertex angles of a simplex in hyperbolic space , Geom. Dedicata, 120 (2006) 49-58.
  • Alsan, Ö., Conformal Triangles, M.Sc. Thesis, Kastamonu University Institute of Science and Technology, Kastamonu 2015.
  • Karlığa, B., Savaş, M., “Field Formulas Based on Edge Lengths of Hyperbolic and Spherical Triangles”, Seminar of Mathematics Deparment, Gazi University, Ankara, (2006) 1-6.
  • Ratcliffe, J.G., “Foundations of Hyperbolic Manifolds”, Springer-Verlag, Berlin, (1994).
  • Tokeşer, Ü., “Triangles in Spherical Hyperbolic and de-Sitter Planes”, Ph.D. Thesis, Gazi University Institute of Science and Technology, Ankara 2013.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Natural Sciences
Yazarlar

Ümit Tokeşer 0000-0003-4773-8291

Ömer Alsan 0000-0002-6535-5174

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 14 Nisan 2020
Kabul Tarihi 1 Eylül 2020
Yayımlandığı Sayı Yıl 2020Cilt: 41 Sayı: 3

Kaynak Göster

APA Tokeşer, Ü., & Alsan, Ö. (2020). Equality of internal angles and vertex points in conformal hyperbolic triangles. Cumhuriyet Science Journal, 41(3), 642-650. https://doi.org/10.17776/csj.719117