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1. Introduction

The set Hf ={xeR[™:<x,x>=-1} is also called the n-dimensional unit pseudo-hyperbolic space. Two

connected components of space Hgare Hy, and H; _; each of these components can be taken as the model of
n-dimensional hyperbolic space. Based on the literature, we will consider the positive component as a model of
hyperbolic space; that is Hy, =H" = R [1,2,8].

First, we remember the concepts of lines and triangles in the hyperbolic plane.

Asfor a:IR—H" and x,yeH", curve

B (Y HOGYX)
a(t)_(cosht)x+(smht)—"y+<X' e
is called line through X,y of H" [9].

Similarly for «:IR—>H" and x,yeH",

y —cosht, x)

a(t)=(cosht)x+(sinht)( Sinht , te[ot]

curve segment is called the line segment of H" limited to X,y [9].

X, ¥, Z, three of which are three points on the same hyperbolic line;
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B . (y—cosht, x)
oz(t)—(cosht)x+(smht)—sinht1 , te[0t]
B . (z—coshs, y)
,[)’(s)—(coshs)y+(smhs)—sinhSl , s€[0,s]
—cosh
y(u)=(coshu)z+(sinhu)%, uelou]

the combination of the a(t)=/(0),B(s,)=7(0)ve y(u,)=cr(0) segmented line segments is called the
hyperbolic triangle, and the hyperbolic zone bounded by the triangle is called the hyperbolic triangular zone

9.

Q) is hyperbolic triangle with B, P,, P, vertex points;

-1 —coshg,, —coshe,
M =| —cosh g, -1 —cosh g,
—coshg,, —coshe,, -1

matrix is called egde matrix of €2 [4].

R, P; two vertices of €2;

coshg; =—(R, P;)

the real number ¢, in the property coshg,; =—(R,P,) is called edge length limited by P, P, of € [4].
Definition 1. The edges of the B, P,, P, -pointed €2 hyperbolic triangle through P, point are also

a:lIR—>H",
B IR—>H";

the 6, angle, which is to be (a'(t)|, .(8'(s)|, ) =cosé;, is called the internal angle of € at point P, [9].
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Figure 1. Triangle in Hyperbolic Space
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2. Conformal Triangles in Hyperbolic Space

Definition 2. The set {P e H?:(m,P) =—cosh r} ,as meH? and r eIR" , is called the m-centered r hyperbolic
circlein H? [9].

Definition 3. Let Q be the hyperbolic triangle with B,P,,P, vertex points. If there are real numbers
n.n.relIR" as @, =r, +r; with an edge length ¢, limited to P, P;; €2 is called conformal hyperbolic triangle

[9].

Theorem 4. Let Q be hyperbolic triangle with B, P,, P, vertex points. € to be conformal if and only if
r>Iny2 , =123 (2.1)

where r,r,,r, € IR" [9].

Now, we give egde matricies for conformal hyperbolic triangles. These matricies play very important roles
throughout the paper for calculations.

Lemma 5. Edge matrix of conformal hyperbolic triangles, edge matrix of conformal hyperbolic equilateral
triangles and edge matrix of conformal hyperbolic isosceles triangles as follows

-1 —cosh(r,+r,) —cosh(r,+r,)
M =| —cosh(r, +r,) -1 —cosh(r, +r,) (2.2)
| —cosh(r,+r,) —cosh(r, +r,) -1
I -1 —cosh(r,+1,) —cosh(r,+r,)
M =|—cosh(r, +,) -1 —cosh(r, +,) (2.3)
—cosh(r,+r,) —cosh(r, +r,) -1
i -1 —cosh(r,+1,) —cosh(r, +r,)
M =| —cosh(r; +,) -1 —cosh(r, +1,) (2.4)
| —cosh(r, +r,) —cosh(r, +r,) -1

respectively [9].

From [4]

M, L
cos 4, :M—J V= 1,j=123 (2.5)

i 0, j=123. (2.6)
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3. Equality of Internal Angles and Vertex Points in Conformal Hyperbolic Triangles

In this section, using the expressions of the internal angles and vertex points, we defined in Definition 1,equality
of internal angles to vertex points of the conformal hyperbolic triangle and special conformal hyperbolic triangles
will be shown.

Now, in Eq. 2.5
M.
C0SG; = ——— ,i#j;i,j=123
MM
was given.
—|M
As sinB, = | | d= ik, j=k;i,j,k=123 . (3.1
-M;i)(-M;;)
Itis
Coselz ZL
MllMZZ

if M,;,M,, and M,, from Eq. 2.2 are calculated and replaced,
_cosh(r, +r,)cosh(r, +1r,)—cosh(r, +r,)
\jsinhz (r,+1,)sinh?(r, +1,)

0sd,

is obtained.
Similarly, if M,;,M,, and |[M | are used at Eq 3.1, calculated from Eq 2.2,

sinPk, =—“_|M|

Mll MZZ

\/4sinh r, sinhr, sinhr, sinh(rl +1,+r 3)

sink, =
\/sinhz (r, +1,)sinh? (1, +1;)

would be. From here

8, = arccos cosh(r, +r,)cosh(r, +r,)—cosh(r, +1,) |
\/Sinhz(r2+r3)sinh2(r1+r3)

(3.2)

4sinhr, sinhr, sinhr, sinh(r, +1, +r
ngarcsin[\/ 2 2 Sinh (5 + 1 3)1

\/sinhz(rz +1,)sinh? (1, +1,)

are obtained.
We calculate the cosine of the right side of Eq 3.2. It would be
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. 4sinhr, sinhr, sinhr, sinh(r, +r, +r
cos arcsm[\/ . 2 2SI (1 +1; + 7o)

\/sinhz (r, +1,)sinh?(r, +1,)

1— sin? arcsin[\/“inh r, sinhr, sinhr, sinh(r1 +1,+ Q)J

\/sinhz (r,+1,)sinh?(r, +1,)

_h Jasinhr; sinhr, sinhr, sinh(r, +1, +r ;) 2
\/sinhz(rz+r3)sinh2(r1+r3)

~ \/sinhz (r, +1,)sinh?(r, + r,)— 4sinhr, sinhr, sinhr, sinh (1, +1, +1;)
N sinh(r, +1,)sinh(r, +1,)

When necessary calculations are made, we get
sinh? (1, +1,)sinh? (1, +1,) —4sinhr; sinhr, sinhr, sinh (1, +r, +1,) =(cosh(r, +1, )cosh(r, +r,) —cosh(r, + rz))2
Thus,
6, =P,
equation is obtained. By using similar method
O, =R
and
0, =F,

are obtained [6].

3.1. Equality of internal angles and vertex points in the conformal hyperbolic equilateral triangle

Definition 6. Let €2 be a hyperbolic triangle with B,P,,P, vertex points, 6,,6,,6,, dihedral angles and

@1 05,0y, €dge lengths. Let QeH?; if 6,=60,=0,,, ¢, =¢. =0, and 6, <%, Q) is called equilateral
hyperbolic triangle [7].

Now, in Eq. 2.5
M, o
08O, = ——=—— ,i#j;i,j=123
MM
was given.
Including
M|
sink, = = = d= =k, j=k;i,j,k=123". (3.3)
—M“)(—ij
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If M,,,M,, and M,, are calculated and replaced from Eq. 2.3;

) cosh(r, +1,)(cosh(r, +r,)-1)
cos 6, =
. \/sinh4(r1+r2)

is obtained.

Similarly, if M,;,M,, and ‘I\7I‘ calculated from Eq. 2.3 used in Eq. 3.3, it becomes as

sinPk, = “_‘M‘
3

11 22

\/(cosh(rl + rz)—l)z(cos.h(r1 +1,)+1) |

\/sinh“(rl +1,)

sink, =

Here,

6, = arccos cosh(r, +r,)(cosh(r, +1,)-1) |
sinh* (1, +1,)

\/(cosh(rl + rz)—l)2 (cosh(r, +r,)+1)

P, =arcsin
sinh® (1, +1,)

are obtained.
We calculate the cosine of the right side of Eq. 3.4 as follow,

\/(cosh(rl + rz)—l)2 (cosh(r,+r,)+1)
\/sinh“(r1+r2)

cos| arcsin

\/(cosh(rl +1,)-1) (cosh(r, +1,) +1)

\/sinh4(rl+r2)

= |1—sin?| arcsin

2

\/(cosh(rl + rz)—l)2 (cosh(r, +r,)+1)
sinh®(r,+1,)

\/5i”h2 (r,+1,)—(cosh(r, +1,)~1)" (cosh(x, +1,) +1)
sinh?(r, +1,) '

We get

sinh? (r, +1,) —(cosh(r, + rz)—l)z(cosh(rl +1,)+1) =cosh? (r, +r,)(cosh(r, + rz)—l)2
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when necessary calculations are made. Thus
O, =P

equality is obtained. By using similar method
0, =R

and

6, =P,

are obtained [6].

3.2. Equality of internal angles and vertex points in the conformal hyperbolic isosceles triangle

Definition 7. Let € be a hyperbolic triangle with B, P,,P, vertex points, 4,,6,,0,, dihedral angles and

@1, 015, 0 €00 lengths. Let Qe H?; if 6, =6,and 26, <z -6,,, Q is called isosceles hyperbolic triangle
[7]1.

Now, in Eq. 2.5

M;; o
086, = —=—== ,i#]j;i,j=123

M;M;
was given.
Including

M|

sink, = d# =k, j=k;i,j,k=123 . (3.5)

(-Ma)(-M,;)
If M,;,M,,and M,, are calculated and replaced from Eq. 2.4;
cosh(r, +r, )(cosh(r +1,)-1)
\/smhz ,)sinh? (1 +1,)

is obtained.

cosé, =

Similarly, if M,;,M,, and ‘I\ﬁ‘ calculated from Eq. 2.4 used in Eq. 3.5, it becomes as

M|
sink, = =
11M22
N/4sinhr sinh?r, sinh(r, +1,)
Sink, = :
\/smhz +1,)sinh? (1, +1,)
Here,
6, —arccos cosh(r, +, )(cosh(r +1,)-1)

\/smh ,)sinh? (1, +1,)
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(3.6)

P,= arcsin{\/4Sinh  sinh” r sinh(r + rz)]
), =

\/sinhz (r, +1,)sinh? (1 +1,)
are obtained.
We calculate the cosine of the right side of Eq. 3.6 as follow,

J4sinh r, sinh? r, sinh (1, +1,)
\/smh ,)sinh? (1 +1,)

cos arcsin[

. —
= |1-sin?| arcsin \/45'”hr15mh r,sinh(r, +1,)
N/Sinhz(rz+I’3)sinh2(rl+r2)

\/smhz r, +1;)sinh?(r, +r,)

{\/4smhr sinh?r, sinh(r, + )JZ

\/smh ,)sinh? (1, +1,)—4sinhr, sinh?r, sinh(r, +r,)
5|nh2(r2 +1,)sinh® (1, +1,) '

We get

sinh? (r, +1,)sinh? (1, + 1, ) — 4sinhr, sinh? r, sinh(r; +r, ) = cosh® (1, +r, )(cosh(r, + r3)—1)2
when necessary calculations are made. Thus

O, =P

equality is obtained. By using similar method,

O =R

and

6,="F,

are obtained [6].
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