Let Mi and Γi (i = 1, 2) be abelian groups such that Mi is a Γi-ring.
An ordered pair (ϕ, φ) of mappings is called a multiplicative isomorphism
of M1 onto M2 if they satisfy the following properties: (i) ϕ is a bijective
mapping from M1 onto M2, (ii) φ is a bijective mapping from Γ1 onto
Γ2 and (iii) ϕ(xγy) = ϕ(x)φ(γ)ϕ(y) for every x, y ∈ M1 and γ ∈ Γ1. We
say that the ordered pair (ϕ, φ) of mappings is additive when ϕ(x + y) =
ϕ(x) + ϕ(y), for all x, y ∈ M1. In this paper we establish conditions on
M1 that assures that (ϕ, φ) is additive.
Birincil Dil | İngilizce |
---|---|
Bölüm | Natural Sciences |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2019 |
Gönderilme Tarihi | 15 Temmuz 2019 |
Kabul Tarihi | 4 Kasım 2019 |
Yayımlandığı Sayı | Yıl 2019Cilt: 40 Sayı: 4 |