Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of CO2, N2, and H2O Dilutions on NO Formation of Partially Premixed Synthesis Gas Combustion

Yıl 2019, Cilt: 40 Sayı: 4, 813 - 818, 31.12.2019
https://doi.org/10.17776/csj.543130

Öz

One
of the main methods to decrease NO emission during the combustion of gases is
the use of diluents. This study is interested in the effects of CO2,
N2, and H2O dilutions in the adiabatic, turbulent,
partially premixed combustion of synthesis gas. The amounts of NO emissions are
computationally determined. The results show that NO maximizes at 1.39 of
equivalence ratio under humid burning air conditions. The best reductive effect
on NO emissions indicates H2O dilution followed by CO2
and N2. The increase in the dilution rates gradationally reduces NO.
The rising pressure enhances NO emissions with/without diluters. The increasing
inlet air and premixed mixture temperatures raises NO.

Kaynakça

  • [1] Zhang Y., Shen W., Zhang H., Wu Y. and Lu J., Effects of Inert Dilution on The Propagation and Extinction of Lean Premixed Syngas/air Flames, Fuel, 157 (2015) 115–121.
  • [2] Singh D., Nishiie T., Tanvir S. and Qiao L., An Experimental and Kinetic Study of Syngas/air Combustion at Elevated Temperatures and The Effect of Water Addition, Fuel, 94 (2012) 448–456.
  • [3] Erik N. Y., Shale Gas and Environmental Effects, Cumhuriyet University Faculty of Science, Science Journal (CSJ), 37 (2016) 426–438.
  • [4] Ozturk S. and Eyriboyun M., NOx Formation in Combustion of Natural Gases Used in Turkey under Different Conditions, J. of Thermal Science and Technology, 30-2 (2010) 95–102.
  • [5] Li S., Li S., Mira D., Zhu M. and Jiang X., Investigation of Dilution Effects on Partially Premixed Swirling Syngas Flames Using a LES-LEM Approach, Journal of the Energy Institute, 91 (2018) 902–915.
  • [6] Xie Y., Wang J., Xu N., Yu S. and Huang Z., Comparative Study on The Effect of CO2 and H2O Dilution on Laminar Burning Characteristics of CO/H2/Air Mixtures, International Journal of Hydrogen Energy, 39 (2014) 3450–3458.
  • [7] Park S. and Kim Y., Effects of Nitrogen Dilution on The NOx Formation Characteristics of CH4/CO/H2 Syngas Counterflow Non-premixed Flames, International Journal of Hydrogen Energy, 42 (2017) 11945–11961.
  • [8] Parka S., Choib G. M. and Tanahashi M., Combustion Characteristics of Syngas on Scaled Gas Turbine Combustor in Pressurized Condition: Pressure, H2/CO Ratio, and N2 Dilution of Fuel, Fuel Processing Technology, 175 (2018) 104–112.
  • [9] Williams T. C., Shaddix C. R. and Schefer R. W., Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of A Premixed Swirl-stabilized Combustor, Combust. Sci. and Tech., 180 (2008) 64–88.
  • [10] Huang M., Zhang Z., Shao W., Xiong Y., Liu Y., Lei F. and Xiao Y., Effect of Air Preheat Temperature on The MILD Combustion of Syngas, Energy Conversion and Management, 86 (2014) 356–364.
  • [11] Tian Y. Zang S. and Ge B., Experimental Investigation on The Combustion Performance of N2 Dilution in Syngas Non-premix Combustion in Humid Air Conditions, Applied Thermal Engineering, 107 (2016) 560–564.
  • [12] Tran M. V., Scribano G., Chong C. T., Ng J. H. and Ho T. X., Numerical and Experimental Study of The Influence of CO2 Dilution on Burning Characteristics of Syngas/air Flame, Journal of the Energy Institute, (2018) 1–9, in press.
  • [13] Giles D. E., Som S. and Aggarwal S. K., NOx Emission Characteristics of Counterflow Syngas Diffusion Flames with Airstream Dilution, Fuel, 85 (2006) 1729–1742.
  • [14] Chan Y. L., Zhu M. M., Zhang Z. Z., Liu P. F. and Zhang D. K., The Effect of CO2 Dilution on The Laminar Burning Velocity of Premixed Methane/air Flames, Energy Procedia 75 (2015) 3048–3053.
  • [15] Zhang Y., Yang T., Liu X., Tian L., Fu Z. and Zhang K., Reduction of Emissions from A Syngas Flame Using Micromixing and Dilution with CO2, Energy&Fuels, 26 (2012) 6595−6601.
  • [16] Donatelli A., Iovane P. and Molino A., High Energy Syngas Production by Waste Tyres Steam Gasification in A Rotary Kiln Pilot Plant, experimental and numerical investigations, Fuel, 89 (2010) 2721–2728.
  • [17] ANSYS Fluent Release 14.5. Tutorial 13. Partially Premixed Combustion in A Co-axial Combustor. 1-17, ANSYS, Inc., 2013.
  • [18] Prathap C., Ray A. and Ravi M. R., Investigation of Nitrogen Dilution Effects on The Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition, Combustion and Flame, 155 (2008) 145–160.

Kısmi Önkarışımlı Sentez Gazı Yanmasının NO Oluşumu Üzerinde CO2, N2 ve H2O Seyreltmelerinin Etkileri

Yıl 2019, Cilt: 40 Sayı: 4, 813 - 818, 31.12.2019
https://doi.org/10.17776/csj.543130

Öz

Gazların yakılmasında NO emisyonunu azaltmak için ana metodlardan biri seyrelticilerin kullanımıdır. Bu çalışma sentez gazının adyabatik, turbülanslı, kısmi önkarışımlı yanmasında CO2, N2 ve H2O seyreltmelerinin etkileri ile ilgilenmektedir. NO emisyonlarının miktarları hesaplamalı olarak saptanmıştır. Sonuçlar, nemli yakma havası şartlarında, NO’in, 1.39 ekivalans oranında maksimize olduğunu göstermektedir. NO emisyonları üzerinde en iyi azaltıcı etkiyi CO2 ve N2 tarafından takip edilen H2O seyrelticisi göstermektedir. Seyreltici oranlarındaki artış derecesel olarak NO’i azaltmaktadır. Yükselen basınç seyreltili veya seyreltisiz NO emisyonlarını artırmaktadır. Artan hava ve önkarıştırılmış karışım giriş sıcaklıkları NO’i yükseltmektedir.

Kaynakça

  • [1] Zhang Y., Shen W., Zhang H., Wu Y. and Lu J., Effects of Inert Dilution on The Propagation and Extinction of Lean Premixed Syngas/air Flames, Fuel, 157 (2015) 115–121.
  • [2] Singh D., Nishiie T., Tanvir S. and Qiao L., An Experimental and Kinetic Study of Syngas/air Combustion at Elevated Temperatures and The Effect of Water Addition, Fuel, 94 (2012) 448–456.
  • [3] Erik N. Y., Shale Gas and Environmental Effects, Cumhuriyet University Faculty of Science, Science Journal (CSJ), 37 (2016) 426–438.
  • [4] Ozturk S. and Eyriboyun M., NOx Formation in Combustion of Natural Gases Used in Turkey under Different Conditions, J. of Thermal Science and Technology, 30-2 (2010) 95–102.
  • [5] Li S., Li S., Mira D., Zhu M. and Jiang X., Investigation of Dilution Effects on Partially Premixed Swirling Syngas Flames Using a LES-LEM Approach, Journal of the Energy Institute, 91 (2018) 902–915.
  • [6] Xie Y., Wang J., Xu N., Yu S. and Huang Z., Comparative Study on The Effect of CO2 and H2O Dilution on Laminar Burning Characteristics of CO/H2/Air Mixtures, International Journal of Hydrogen Energy, 39 (2014) 3450–3458.
  • [7] Park S. and Kim Y., Effects of Nitrogen Dilution on The NOx Formation Characteristics of CH4/CO/H2 Syngas Counterflow Non-premixed Flames, International Journal of Hydrogen Energy, 42 (2017) 11945–11961.
  • [8] Parka S., Choib G. M. and Tanahashi M., Combustion Characteristics of Syngas on Scaled Gas Turbine Combustor in Pressurized Condition: Pressure, H2/CO Ratio, and N2 Dilution of Fuel, Fuel Processing Technology, 175 (2018) 104–112.
  • [9] Williams T. C., Shaddix C. R. and Schefer R. W., Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of A Premixed Swirl-stabilized Combustor, Combust. Sci. and Tech., 180 (2008) 64–88.
  • [10] Huang M., Zhang Z., Shao W., Xiong Y., Liu Y., Lei F. and Xiao Y., Effect of Air Preheat Temperature on The MILD Combustion of Syngas, Energy Conversion and Management, 86 (2014) 356–364.
  • [11] Tian Y. Zang S. and Ge B., Experimental Investigation on The Combustion Performance of N2 Dilution in Syngas Non-premix Combustion in Humid Air Conditions, Applied Thermal Engineering, 107 (2016) 560–564.
  • [12] Tran M. V., Scribano G., Chong C. T., Ng J. H. and Ho T. X., Numerical and Experimental Study of The Influence of CO2 Dilution on Burning Characteristics of Syngas/air Flame, Journal of the Energy Institute, (2018) 1–9, in press.
  • [13] Giles D. E., Som S. and Aggarwal S. K., NOx Emission Characteristics of Counterflow Syngas Diffusion Flames with Airstream Dilution, Fuel, 85 (2006) 1729–1742.
  • [14] Chan Y. L., Zhu M. M., Zhang Z. Z., Liu P. F. and Zhang D. K., The Effect of CO2 Dilution on The Laminar Burning Velocity of Premixed Methane/air Flames, Energy Procedia 75 (2015) 3048–3053.
  • [15] Zhang Y., Yang T., Liu X., Tian L., Fu Z. and Zhang K., Reduction of Emissions from A Syngas Flame Using Micromixing and Dilution with CO2, Energy&Fuels, 26 (2012) 6595−6601.
  • [16] Donatelli A., Iovane P. and Molino A., High Energy Syngas Production by Waste Tyres Steam Gasification in A Rotary Kiln Pilot Plant, experimental and numerical investigations, Fuel, 89 (2010) 2721–2728.
  • [17] ANSYS Fluent Release 14.5. Tutorial 13. Partially Premixed Combustion in A Co-axial Combustor. 1-17, ANSYS, Inc., 2013.
  • [18] Prathap C., Ray A. and Ravi M. R., Investigation of Nitrogen Dilution Effects on The Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition, Combustion and Flame, 155 (2008) 145–160.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Natural Sciences
Yazarlar

Suat Öztürk 0000-0002-8147-9943

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 21 Mart 2019
Kabul Tarihi 11 Kasım 2019
Yayımlandığı Sayı Yıl 2019Cilt: 40 Sayı: 4

Kaynak Göster

APA Öztürk, S. (2019). The Effects of CO2, N2, and H2O Dilutions on NO Formation of Partially Premixed Synthesis Gas Combustion. Cumhuriyet Science Journal, 40(4), 813-818. https://doi.org/10.17776/csj.543130