Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Results On Quaternion 3-Space

Yıl 2018, Cilt: 39 Sayı: 2, 303 - 313, 29.06.2018
https://doi.org/10.17776/csj.434228

Öz

In this paper, the set J′=H(Q₄,Jγ) of 4 by 4 matrices, with
entries in a quaternion F-algebra Q, that are symmetric with respect to the
canonical involution Jγ is studied. J′
is also the special Jordan matrix algebra and some results related to points
and lines of the quaternion 3-space P(J′)
defined by the algebra are introduced. Finally, by taking dual ring Q:= Q+Qε (ε
Q, ε²=0) instead of Q,
the obtained results are carried to a more general state.

Kaynakça

  • [1]. Akpinar, A. and Erdogan, F.O., Dual Quaternionic (n-1)-Spaces Defined by Special Jordan Algebras of Dimension 4n²-2n, 2018 (under review)
  • [2]. Akpinar, A. and Erdogan, F.O., Collineations and Cross-Ratios in Octonion Planes, 2018 (under review)
  • [3]. Celik, B. and Erdogan, F.O., On Addition and Multiplication of Points in a Certain Class of Projective Klingenberg Planes, Journal of Inequalities and Applications, 230 (2013).
  • [4]. Celik, B. and Dayioglu, A., The Collineations which Act as Addition and Multiplication on Points in a Certain Class of Projective Klingenberg Planes, Journal of Inequalities and Applications, 193 (2013).
  • [5]. Faulkner, J.R., Octonion Planes Defined by Quadratic Jordan Algebras, Mem. Amer. Math. Soc., 104 (1970) 1-71.
  • [6]. Faulkner, J.R., The Role of Nonassociative Algebra in Projective Geometry, Graduate Studies in Mathematics, Vol. 159, Amer. Math. Soc., Providence, R.I., (2014).
  • [7]. Jacobson, N., Structure and Representations of Jordan Algebras, Colloq. Publ. 39, Amer. Math. Soc., Providence, R.I., (1968).
  • [8]. Jacobson, N., Basic Algebra I, W. H. Freeman and Company, New York, (1985).
  • [9]. McCrimmon, K., The Freudenthal-Springer-Tits Constructions of Exceptional Jordan Algebras, Trans. of the Amer. Math. Soc., 139 (1969) 495-510.

Kuaterniyon 3-Uzay Üzerine Bazı Sonuçlar

Yıl 2018, Cilt: 39 Sayı: 2, 303 - 313, 29.06.2018
https://doi.org/10.17776/csj.434228

Öz

Bu makalede, girdileri bir Q kuaterniyon F-cebirinden alınan ve Jγ
kanonik involusyonuna göre simetrik olan 4×4 boyutlu matrislerin oluşturduğu J′=H(Q₄,Jγ)
kümesi ile çalışılmıştır. Bu J′
kümesi aynı zamanda bir özel Jordan matris cebiridir ve bu cebir ile tanımlanan
P(J′) kuaterniyon 3-uzayın noktalar
ve doğruları ile ilgili bazı sonuçlar sunulmuştur. Son olarak, Q yerine Q:= Q+Qε (ε
Q, ε²=0) dual halkası
alınarak elde edilen sonuçlar daha genel bir duruma taşınmıştır.

Kaynakça

  • [1]. Akpinar, A. and Erdogan, F.O., Dual Quaternionic (n-1)-Spaces Defined by Special Jordan Algebras of Dimension 4n²-2n, 2018 (under review)
  • [2]. Akpinar, A. and Erdogan, F.O., Collineations and Cross-Ratios in Octonion Planes, 2018 (under review)
  • [3]. Celik, B. and Erdogan, F.O., On Addition and Multiplication of Points in a Certain Class of Projective Klingenberg Planes, Journal of Inequalities and Applications, 230 (2013).
  • [4]. Celik, B. and Dayioglu, A., The Collineations which Act as Addition and Multiplication on Points in a Certain Class of Projective Klingenberg Planes, Journal of Inequalities and Applications, 193 (2013).
  • [5]. Faulkner, J.R., Octonion Planes Defined by Quadratic Jordan Algebras, Mem. Amer. Math. Soc., 104 (1970) 1-71.
  • [6]. Faulkner, J.R., The Role of Nonassociative Algebra in Projective Geometry, Graduate Studies in Mathematics, Vol. 159, Amer. Math. Soc., Providence, R.I., (2014).
  • [7]. Jacobson, N., Structure and Representations of Jordan Algebras, Colloq. Publ. 39, Amer. Math. Soc., Providence, R.I., (1968).
  • [8]. Jacobson, N., Basic Algebra I, W. H. Freeman and Company, New York, (1985).
  • [9]. McCrimmon, K., The Freudenthal-Springer-Tits Constructions of Exceptional Jordan Algebras, Trans. of the Amer. Math. Soc., 139 (1969) 495-510.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Atilla Akpınar

Fatma Özen Erdoğan

Yayımlanma Tarihi 29 Haziran 2018
Gönderilme Tarihi 10 Nisan 2017
Kabul Tarihi 10 Nisan 2018
Yayımlandığı Sayı Yıl 2018Cilt: 39 Sayı: 2

Kaynak Göster

APA Akpınar, A., & Özen Erdoğan, F. (2018). Some Results On Quaternion 3-Space. Cumhuriyet Science Journal, 39(2), 303-313. https://doi.org/10.17776/csj.434228