Research Article
BibTex RIS Cite
Year 2021, , 403 - 412, 30.06.2021
https://doi.org/10.17776/csj.872732

Abstract

References

  • [1] Ando H., Nojima, S., Kanbe, H., Band‐ edge optical absorption spectra of GaAs quantum wires calculated by multiband effective mass theory, Journal of Applied Physics 74 (1993) 6383-6390.
  • [2] Gurmessa A., Mengesha M., International Journal of Physical Sciences, 14 (7) (2019) 55-61.
  • [3] Duque C. A, Oliveira L. E, de Dios-Leyva M, correlated electron-hole transitions in bulk GaAs and GaAs-(Ga, Al) As quantum wells: effects of applied electric and inplane magnetic fields, Birazilian Journal of Physics, 36 (2006) 1038-1041.
  • [4] Pokutnyi S. I., Tyc M. H., Salejda W., Misiewicz J., Two-dimensional WannierMott exciton in a uniform electric field, Physics of the Solid State., 43 (2001) 923- 926.
  • [5] Raigoza N., Duque C.A., Reyes-Go´mez E., Oliveira L.E., Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga, Al) As quantum wells, Physica B, 367 (2005) 267–274.
  • [6] Venkateswaran U., Chandrasekhar M., Chandrasekhar H. R., Bojak B. A., Chambers F.A., Meese J. M., Phys. Rev. B, 33 (1986) 8416-8423.
  • [7] Saravanan S., John Peter A., Binding Energy of a Magneto-exciton in an InAsP Quantum Well Wire for the Potential Application of Telecommunication Networks, Materials Today: Proceedings, 2 (2015) 4373- 4377.
  • [8] Vurgaftman I. and Meyer J. R., Ram-Mohan L. R., Band parameters for III–V compound semiconductors and their alloys, Journal of Applied Physics, 89 (2001) 5815 -5875.
  • [9] Morales A. L., Raigoza N., Duque C. A. and Oliveira L. E., Effects of growthdirection electric and magnetic fields on excitons in GaAs−Ga1−xAlxAs coupled double quantum wells, Phys. Rev. B, 77 (2008) 113309-1-113309-4.
  • [10] Butov L. V., Shashkin A. A., Dolgopolov V. T., Campman K. L., and Gossard A. C., Magneto-optics of the spatially separated electron and hole layers in GaAs/AlxGa1−xAs coupled quantum wells, Phys. Rev. B, 60 (1999) 8753-8758.
  • [11] Kavokin A. V. Kokhanovski S. I. Nesvizhki A. I. Sasin M. E. Sesyan R. P. Ustinov V. M. Yu. Egorov A. Zhukov A. E. and Gupalov S. V. Semiconductors, 31 (1997) 950-960.
  • [12] Agekyan V. T., Spectroscopic properties of semiconductor crystals with direct forbidden energy gap, Phys. Stat. Sol. (a), 43 (1977) 11-42.
  • [13] Varshni Y. P., Temperature dependence of the energy gap in semiconductors, Physica, 34 (1967) 149-154.
  • [14] Peter A. J., Gnanasekar K., Navaneethakrishnan K., Binding energy of impurity states in a parabolic quantum dot in a strong magnetic field, Phys. Stat. Sol. (b), 242 (2005) 2480-2488.
  • [15] Di Dio M., Lomascolo M., Passaseo A., Gerardi C., Giannini C., Quirini A., Tapfer L., Giugno P.V., De Vittorio M., Greco D., Convertino A. L., Vasanelli L., Rinaldi R., Cingolani R., J. Appl. Phys., 80 (1996) 482-489.
  • [16] Martini S., Quivy A. A., da Silva E. C. F., Leite J. R., Real-time determination of the segregation strength of indium atoms in InGaAs layers grown by molecular-beam epitaxy, Appl. Phys. Lett., 81 (2002) 2863-2865.
  • [17] Martini S., Quivy A. A., Tabata A., Leite J. R., Influence of the temperature and excitation power on the optical properties of InGaAs/GaAs quantum wells grown on vicinal GaAs (001) surfaces (2001), Journal of Applied Physics, 90 (2001) 2280- 2289.
  • [18] Bratkovski A. and Kamins T. I., Nanowire-Based Light-Emitting Diodes and Light-Detection Devices with Nanocrystalline Outer Surface, Google Patents, (2010)
  • [19] Baba T., Yogo Y., Suzuki K., Koyama F., Iga K., Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser, Electron. Lett., 29 (1993) 913-914.
  • [20] Uchida T., Koyama F., and Iga K., Control of GaInAs/InP layer thickness for surface‐ emitting lasers by chemical beam epitaxy, Electron. Communi. in Japan Part II ,75 (1992) 101-107.
  • [21] Pyun S. H., Jeong W. G., Korean J., Phys. Soc J. Korean Phys. Soc., 56 (2010) 586- 590.
  • [22] Soulby M. R., Revin D. G., Commin J. P., Krysa A. B., Roberts J. S., Cockburn J. W., Probing diagonal laser transitions in InGaAs/AlInAs/InP quantum cascade lasers, J. Appl. Phys., 106 (2009) 123106-123109.
  • [23] Matthews M. R., Steed R. J., Frogley M. D., Phillips C. C., Attaluri R. S. and Krishna S., Transient photoconductivity measurements of carrier lifetimes in an InAs ∕ In0.15Ga0.85As dots-in-a-well detector, Appl. Phys. Lett., 90 (2007) 103519-1- 103519-4.
  • [24] Tsao S., Lim H., Zhang W., and Razeghi M., High operating temperature 320×256320×256 middle-wavelength infrared focal plane array imaging based on an InAs∕InGaAs∕InAlAs∕InPInAs∕InGaAs∕InAlAs∕InP quantum dot infrared photodetector, Appl. Phys. Lett., 90 (2007) 201109-1-.201109-3.
  • [25] Zekentes K., Halkias G., Dimoulas A., Tabata A., Benyattou T., Guillot G., Morante J. R., Peiró F., Cornet A., Georgakilas A., Christou A., Materials problems for the development of InGaAs/InAlAs HEMT technology, Mater. Sci. Eng. B, 20 (1993) 21-25.
  • [26] Connolly J. P. and Rohr C., Quantum well cells for thermophotovoltaics, Semicond. Sci. Technol, 18 (2003) 216-220.
  • [27] Nahory R. E., Pollack M. A., Johnston W. D., and Barns R. L., Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsP1−ylattice matched to InP, Appl. Phys. Lett., 33 (1978) 659-661.
  • [28] Fritz I. J., Klem J. F., Schirber J. E., Olsen J. A., and Bonner W. A., InGaAs/GaAs multiple strained‐ layer structure grown on a lattice‐ matched InGaAs substrate wafer, Appl. Phys. Lett. 66 (1995) 1957-1959.
  • [29] Adachi S., Oe K., Internal strain and photoelastic effects in Ga1−xAlxAs/GaAs and In1−xGaxAsyP1−y/InP crystals, J. Appl. Phys. 54, (1983)6620-6627.
  • [30] Guldner Y., Vieren J. P., Voos M., Delahaye F., Dominguez D., Hirtz J. P., Razeghi M., Quantum Hall effect in In0.53Ga0.47As-InP heterojunctions with two populated electric subbands, Phys. Rev. B, 33 (1986) 3990-3993.
  • [31] Lamberti C., Bordiga S., Structural and optical investigation of InAsxP1−x/InP strained superlattices, J. Appl. Phys., 83 (1998) 1058-1077.
  • [32] Elagoz S., Karki H. D., Baser P., Sokmen I., The magnetoexciton binding energy dependency on aluminium concentration in cylindrical quantum wires, Superlatt. and Microstruct., 45 (2009) 506-513.
  • [33] Karki H. D., Elagoz S., Baser P., Amca R., Sokmen I., Barrier height effect on binding energies of shallow hydrogenic impurities in coaxial GaAs/AlxGa1-xAs quantum well wires under a uniform magnetic field, Superlatt. Microstruct., (4) (2007) 227-236.
  • [34] Ji G., Huang D., Reddy U. K., Henderson T. S., Houdre R., and Morkoç H., Optical investigation of highly strained InGaAs/GaAs multiple quantum wells, Journal of Applied Physics, 62 (8) (1987) 3366-3373.
  • [35] Peter, Y. Yu., Cardona M., Fundamentals of Semiconductors, Berlin: Springer, (1996) 276-290.
  • [36] Baser P., Karki H. D., Demir I., Elagoz S., The hydrostatic pressure, and temperature effects on the binding energy of magnetoexcitons in cylindrical quantum well wires, Superlatt. Microstruct., 63 (2013) 100-109.
  • [37] Beltran Rios C. L., Porras-Montenegro N., Pressure, and magnetic field effects on the binding energy of excitonic states in single and coupled GaAs-AlGaAs quantum wells, Microelectronics Journal, 36 (2005) 369-373.
  • [38] Baser P., Pressure, and temperature effects on magnetoelectric band energies in GaAs / InxGa1-xAs cylindrical quantum wires, Cumhuriyet Science Journal, 41(3) (2020) 699-705.
  • [39] Başer P, Altuntas I, Elagoz S, The hydrostatic pressure, and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well, Superlattice Microst., 92 (2016) 210-216.
  • [40] Baser P., Electronic properties of low dimensional systems: the hydrogenic impurities and excitonic binding energies in cylindrical Ga1-xAlxAs /GaAs quantum wires under an externally applied magnetic field, Marmara University, Institute of science PhD. Thesis, (2007).

Effect of pressure, temperature, and magnetic field on the binding energy of the electron-hole system in III-V group semiconductors

Year 2021, , 403 - 412, 30.06.2021
https://doi.org/10.17776/csj.872732

Abstract

In this study, ground state binding energy of heavy hole magneto exciton in GaAs/In0.47Ga 0.53As cylindrical quantum well wires (CQWWs) were calculated using variational technique depending on wire size and external parameters. We can briefly state the change of binding energy with hydrostatic pressure, temperature, wire radius and external magnetic field strength as follows. With increasing temperature for constant pressure and magnetic field, the exciton binding energy decreases slightly. On the other hand, increasing magnetic field strength and pressure increase the binding energy as the particle's quantum confinement effects increase. To interpret these results, we examined pressure and temperature changes of barrier heights, effective masses, wire radius, dielectric constant, and band offsets. Conduction and valence band offset increase by 37% with pressure, while band offsets decrease by -1.55% with temperature. These differences in values are directly due to the difference in pressure and temperature coefficients of the prohibited band gaps of GalnAs and InAs. These variations in binding energy, as well as in electron and hole energies, depending on structure parameters and external parameters provide a prediction to produce adjustable semiconductor devices.

References

  • [1] Ando H., Nojima, S., Kanbe, H., Band‐ edge optical absorption spectra of GaAs quantum wires calculated by multiband effective mass theory, Journal of Applied Physics 74 (1993) 6383-6390.
  • [2] Gurmessa A., Mengesha M., International Journal of Physical Sciences, 14 (7) (2019) 55-61.
  • [3] Duque C. A, Oliveira L. E, de Dios-Leyva M, correlated electron-hole transitions in bulk GaAs and GaAs-(Ga, Al) As quantum wells: effects of applied electric and inplane magnetic fields, Birazilian Journal of Physics, 36 (2006) 1038-1041.
  • [4] Pokutnyi S. I., Tyc M. H., Salejda W., Misiewicz J., Two-dimensional WannierMott exciton in a uniform electric field, Physics of the Solid State., 43 (2001) 923- 926.
  • [5] Raigoza N., Duque C.A., Reyes-Go´mez E., Oliveira L.E., Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga, Al) As quantum wells, Physica B, 367 (2005) 267–274.
  • [6] Venkateswaran U., Chandrasekhar M., Chandrasekhar H. R., Bojak B. A., Chambers F.A., Meese J. M., Phys. Rev. B, 33 (1986) 8416-8423.
  • [7] Saravanan S., John Peter A., Binding Energy of a Magneto-exciton in an InAsP Quantum Well Wire for the Potential Application of Telecommunication Networks, Materials Today: Proceedings, 2 (2015) 4373- 4377.
  • [8] Vurgaftman I. and Meyer J. R., Ram-Mohan L. R., Band parameters for III–V compound semiconductors and their alloys, Journal of Applied Physics, 89 (2001) 5815 -5875.
  • [9] Morales A. L., Raigoza N., Duque C. A. and Oliveira L. E., Effects of growthdirection electric and magnetic fields on excitons in GaAs−Ga1−xAlxAs coupled double quantum wells, Phys. Rev. B, 77 (2008) 113309-1-113309-4.
  • [10] Butov L. V., Shashkin A. A., Dolgopolov V. T., Campman K. L., and Gossard A. C., Magneto-optics of the spatially separated electron and hole layers in GaAs/AlxGa1−xAs coupled quantum wells, Phys. Rev. B, 60 (1999) 8753-8758.
  • [11] Kavokin A. V. Kokhanovski S. I. Nesvizhki A. I. Sasin M. E. Sesyan R. P. Ustinov V. M. Yu. Egorov A. Zhukov A. E. and Gupalov S. V. Semiconductors, 31 (1997) 950-960.
  • [12] Agekyan V. T., Spectroscopic properties of semiconductor crystals with direct forbidden energy gap, Phys. Stat. Sol. (a), 43 (1977) 11-42.
  • [13] Varshni Y. P., Temperature dependence of the energy gap in semiconductors, Physica, 34 (1967) 149-154.
  • [14] Peter A. J., Gnanasekar K., Navaneethakrishnan K., Binding energy of impurity states in a parabolic quantum dot in a strong magnetic field, Phys. Stat. Sol. (b), 242 (2005) 2480-2488.
  • [15] Di Dio M., Lomascolo M., Passaseo A., Gerardi C., Giannini C., Quirini A., Tapfer L., Giugno P.V., De Vittorio M., Greco D., Convertino A. L., Vasanelli L., Rinaldi R., Cingolani R., J. Appl. Phys., 80 (1996) 482-489.
  • [16] Martini S., Quivy A. A., da Silva E. C. F., Leite J. R., Real-time determination of the segregation strength of indium atoms in InGaAs layers grown by molecular-beam epitaxy, Appl. Phys. Lett., 81 (2002) 2863-2865.
  • [17] Martini S., Quivy A. A., Tabata A., Leite J. R., Influence of the temperature and excitation power on the optical properties of InGaAs/GaAs quantum wells grown on vicinal GaAs (001) surfaces (2001), Journal of Applied Physics, 90 (2001) 2280- 2289.
  • [18] Bratkovski A. and Kamins T. I., Nanowire-Based Light-Emitting Diodes and Light-Detection Devices with Nanocrystalline Outer Surface, Google Patents, (2010)
  • [19] Baba T., Yogo Y., Suzuki K., Koyama F., Iga K., Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser, Electron. Lett., 29 (1993) 913-914.
  • [20] Uchida T., Koyama F., and Iga K., Control of GaInAs/InP layer thickness for surface‐ emitting lasers by chemical beam epitaxy, Electron. Communi. in Japan Part II ,75 (1992) 101-107.
  • [21] Pyun S. H., Jeong W. G., Korean J., Phys. Soc J. Korean Phys. Soc., 56 (2010) 586- 590.
  • [22] Soulby M. R., Revin D. G., Commin J. P., Krysa A. B., Roberts J. S., Cockburn J. W., Probing diagonal laser transitions in InGaAs/AlInAs/InP quantum cascade lasers, J. Appl. Phys., 106 (2009) 123106-123109.
  • [23] Matthews M. R., Steed R. J., Frogley M. D., Phillips C. C., Attaluri R. S. and Krishna S., Transient photoconductivity measurements of carrier lifetimes in an InAs ∕ In0.15Ga0.85As dots-in-a-well detector, Appl. Phys. Lett., 90 (2007) 103519-1- 103519-4.
  • [24] Tsao S., Lim H., Zhang W., and Razeghi M., High operating temperature 320×256320×256 middle-wavelength infrared focal plane array imaging based on an InAs∕InGaAs∕InAlAs∕InPInAs∕InGaAs∕InAlAs∕InP quantum dot infrared photodetector, Appl. Phys. Lett., 90 (2007) 201109-1-.201109-3.
  • [25] Zekentes K., Halkias G., Dimoulas A., Tabata A., Benyattou T., Guillot G., Morante J. R., Peiró F., Cornet A., Georgakilas A., Christou A., Materials problems for the development of InGaAs/InAlAs HEMT technology, Mater. Sci. Eng. B, 20 (1993) 21-25.
  • [26] Connolly J. P. and Rohr C., Quantum well cells for thermophotovoltaics, Semicond. Sci. Technol, 18 (2003) 216-220.
  • [27] Nahory R. E., Pollack M. A., Johnston W. D., and Barns R. L., Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsP1−ylattice matched to InP, Appl. Phys. Lett., 33 (1978) 659-661.
  • [28] Fritz I. J., Klem J. F., Schirber J. E., Olsen J. A., and Bonner W. A., InGaAs/GaAs multiple strained‐ layer structure grown on a lattice‐ matched InGaAs substrate wafer, Appl. Phys. Lett. 66 (1995) 1957-1959.
  • [29] Adachi S., Oe K., Internal strain and photoelastic effects in Ga1−xAlxAs/GaAs and In1−xGaxAsyP1−y/InP crystals, J. Appl. Phys. 54, (1983)6620-6627.
  • [30] Guldner Y., Vieren J. P., Voos M., Delahaye F., Dominguez D., Hirtz J. P., Razeghi M., Quantum Hall effect in In0.53Ga0.47As-InP heterojunctions with two populated electric subbands, Phys. Rev. B, 33 (1986) 3990-3993.
  • [31] Lamberti C., Bordiga S., Structural and optical investigation of InAsxP1−x/InP strained superlattices, J. Appl. Phys., 83 (1998) 1058-1077.
  • [32] Elagoz S., Karki H. D., Baser P., Sokmen I., The magnetoexciton binding energy dependency on aluminium concentration in cylindrical quantum wires, Superlatt. and Microstruct., 45 (2009) 506-513.
  • [33] Karki H. D., Elagoz S., Baser P., Amca R., Sokmen I., Barrier height effect on binding energies of shallow hydrogenic impurities in coaxial GaAs/AlxGa1-xAs quantum well wires under a uniform magnetic field, Superlatt. Microstruct., (4) (2007) 227-236.
  • [34] Ji G., Huang D., Reddy U. K., Henderson T. S., Houdre R., and Morkoç H., Optical investigation of highly strained InGaAs/GaAs multiple quantum wells, Journal of Applied Physics, 62 (8) (1987) 3366-3373.
  • [35] Peter, Y. Yu., Cardona M., Fundamentals of Semiconductors, Berlin: Springer, (1996) 276-290.
  • [36] Baser P., Karki H. D., Demir I., Elagoz S., The hydrostatic pressure, and temperature effects on the binding energy of magnetoexcitons in cylindrical quantum well wires, Superlatt. Microstruct., 63 (2013) 100-109.
  • [37] Beltran Rios C. L., Porras-Montenegro N., Pressure, and magnetic field effects on the binding energy of excitonic states in single and coupled GaAs-AlGaAs quantum wells, Microelectronics Journal, 36 (2005) 369-373.
  • [38] Baser P., Pressure, and temperature effects on magnetoelectric band energies in GaAs / InxGa1-xAs cylindrical quantum wires, Cumhuriyet Science Journal, 41(3) (2020) 699-705.
  • [39] Başer P, Altuntas I, Elagoz S, The hydrostatic pressure, and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well, Superlattice Microst., 92 (2016) 210-216.
  • [40] Baser P., Electronic properties of low dimensional systems: the hydrogenic impurities and excitonic binding energies in cylindrical Ga1-xAlxAs /GaAs quantum wires under an externally applied magnetic field, Marmara University, Institute of science PhD. Thesis, (2007).
There are 40 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Pınar Başer 0000-0003-0396-0210

Publication Date June 30, 2021
Submission Date February 1, 2021
Acceptance Date April 26, 2021
Published in Issue Year 2021

Cite

APA Başer, P. (2021). Effect of pressure, temperature, and magnetic field on the binding energy of the electron-hole system in III-V group semiconductors. Cumhuriyet Science Journal, 42(2), 403-412. https://doi.org/10.17776/csj.872732