Research Article
BibTex RIS Cite

Kısa Erimli Dipsiz Üstel Potansiyelli Bir Kuantum Kuyusunun Doğrusal Olmayan Optiksel Özellikleri

Year 2018, , 934 - 939, 24.12.2018
https://doi.org/10.17776/csj.478719

Abstract

Sunulan bu çalışmada, kısa erimli dipsiz üstel
potansiyelli bir GaAs kuantum kuyusunun doğrusal olmayan optiksel özellikleri
üzerine kuşatma potansiyelinin derinliğinin etkisi ayrıntılı olarak
çalışılmıştır. Bu yapının enerji özdeğer ve özfonksiyonları etkin kütle ve zarf
fonksiyonu yaklaşımı çerçevesinde hesaplanmıştır. Doğrusal, üçüncü dereceden
doğrusal olmayan ve toplam soğurma katsayısı ve bağıl kırılma indisindeki
değimleri için analitik formüller kompakt yoğunluklu matris yaklaşımı (CDMA) ve
yineleme yöntemi kullanarak elde edilmiştir. Bu modele dayanarak, elde ettiğimiz
sayısal sonuçları kuşatma potansiyelinin derinliğinin birkaç değeri için gelen
foton enerjisinin bir fonksiyonu olarak rapor ettik. Sonuçlar doğrusal, üçüncü
dereceden doğrusal olmayan ve toplam soğurma katsayılarının ve bağıl kırılma
indisi değişimlerinin kuşatma potansiyelinin derinliğinden kuvvetli bir şekilde
etkilendiğini göstermiştir.

References

  • [1]. Imamura K., Sugiyama Y., Nakata Y., Muto S., Yokoyama N., New optical memory structure using self-assembled InAs quantum dots, Jpn. J. Appl. Phys. 34 (1995) L1445-L1447.
  • [2]. Leobandung E., Guo L., Chou SY., Single hole quantum dot transistors in silicon, Appl. Phys. Lett. 67 (1995) 2338-2340.
  • [3]. Durante F., Alves P., Karunasiri G., Hanson N., Byloos M., Liu HC., Bezinger A., Buchanan M., NIR, MWIR and LWIR quantum well infrared photodetector using interband and intersubband transitions, Infrared Phys. Technol. 50 (2007) 182-187.
  • [4]. Nasrallah SAB., Sfina N., Said M., Electronic properties of intersubband transition in (CdS/ZnSe)/BeTe quantum wells, Eur. Phys. J. B 47 (2005) 167-170.
  • [5]. Atanasov R., Bassani F., Agranovich VM., Second-order nonlinear susceptibility of asymmetric quantum wells, Phys. Rev. B 50 (2004) 7809-7819.
  • [6]. En LZ., Xian GK., Polaronic electron-phonon interactions on the third-harmonic generation in a square quantum well, Commun. Theoretical Phys. 45 (2006) 171-174.
  • [7]. Wang G., Guo Q., Second-harmonic generation from nonlocal interaction between terahertz waves and step quantum wells, Superlatt. Microstruc. 47 (2010) 744-753.
  • [8]. Zhang C., Wang Z., Lui Y., Peng C., Guo K.,Polaron effects on the optical refractive index changes in asymmetrical quantum wells, Phys. Lett. A 375 (2011) 484-487.
  • [9]. Martinez-Orozco JC., Mora-Ramos ME., Duque CA., Nonlinear optical rectification and second and third harmonic generation in GaAs -FET systems under hydrostatic pressure, J. Lumin. 132 (2012) 449-456.
  • [10]. Leonora JM., Peter AJ., Lee CW., Polaron effects on the optical properties in a strained diluted magnetic quantum well, Solid State Commun. 152 (2012) 516-521.
  • [11]. Solaimani M., Morteza I., Arabshabi H., Reza SM., Effect of the magnetic field on optical properties of GaN/AlN multiple quantum wells, J. Lumin. 134 (2013) 88-95.
  • [12]. Rojas-Briseno JG., Martinez-Orozco JC., Rodrigues-Vargas I., Mora-Ramos ME., Duque CA., Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double -doped quantum well in GaAs with a Schottky barrier potential, Physica B 424 (2013) 13-19.
  • [13]. Duque CA., Akimov V., Demediuk R., Belykh V., Tiutiunnyk A., Morales AL., Restrepo RL., Mora-Ramos ME., Fomina O., Tulupenco V., Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well, Superlatt. Microstruc. 87 (2015) 125-130.
  • [14]. Zhang ZH., Lui C., Guo KX, Electron-phonon interaction effect on the refractive index changes in a modified Pöschl-Teller quantum well, Optik 127 (2016) 1590-1594.
  • [15]. Aytekin O., Turgut S., Tomak M, Nonlinear optical properties of a Pöcchl-Teller quantum well under electric and magnetic fields, Physica E 44 (2012) 1612-1616.
  • [16]. Panda BK., Panda S., Effect of intense laser field on the nonlinear optical susceptibilities in an asymmetric quantum well, Superlatt. Microstruc. 61 (2013) 124-133.
  • [17]. Campione S., Benz A., Sinclair MB., Capolino F., Brener I., Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum well, Appl. Phys. Lett. 104 (2014) 131104-5.
  • [18]. Karimi MJ., Vafaei H., Intense laser field effects on the linear and nonlinear intersubband optical properties in a strained InGaN/GaN quantum well, Physica B 452 (2014) 131-135.
  • [19]. Martinez-Orozco JC., Rodriquez-Magdaleno KA., Suarez Lopes JR., Duque CA., Restrepo RL., Absorption coefficient and relative refractive index change for a double -doped GaAs MIGFET-like structure: Electric and magnetic field effects, Superlatt. Microstruc. 92, (2016) 166-173.
  • [20]. Li K., Guo K., Jiang X., Hu M., Effect of position-dependent effective mass on nonlinear optical properties in a quantum well, Optik 132 (2017) 375-381.
  • [21]. Nalwa HS. and Miyata S. (Eds.), Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton, FL (1997).
  • [22]. Kasapoglu E., Yesilgul U., Ungan F., Sökmen I., Sari H., The effect of the intense laser field on the electronic states and optical properties of n-type double -doped GaAs quantum wells, Opt. Mat. 64 (2017) 82-87.
  • [23]. Hu M., Guo K., Yu Q., Zhang Z., Third-harmonic generation investigated by a short-range bottomless exponential potential well, Superlattices and Microstructures, 122 (2018) 538-547.
  • [24]. Kasapoglu E., Ungan F., Duque CA., Yesilgul U., Mora-Ramos ME., Sari H., Sökmen I., The effects of the electric and magnetic fields on the optical properties in the step-like asymmetric quantum well, Physica E 61 (2014) 107-110.

Nonlinear Optical Properties of a Quantum Well With Short-Range Bottomless Exponential Potential

Year 2018, , 934 - 939, 24.12.2018
https://doi.org/10.17776/csj.478719

Abstract

In the present study, the effect of the depth of the confinement
potential on the nonlinear optical of a GaAs quantum well with short-range
bottomless exponential potential is studied in detail. The energy eigenvalues
and eigenfunctions of this structure are calculated within the framework of
effective mass and envelope function approximations. Analytic formulas for the
linear, third-order nonlinear and total absorption coefficients and relative
refractive index changes are obtained using the compact-density matrix approach
(CDMA) and iterative method. Based on this model, our obtained numerical
results are reported as a function of incident photon energy for several values
of the depth of the confinement potential. The results show that the linear,
third order nonlinear, and total absorption coefficients and relative
refractive index changes are strongly affected by the depth of the confinement
potential.

References

  • [1]. Imamura K., Sugiyama Y., Nakata Y., Muto S., Yokoyama N., New optical memory structure using self-assembled InAs quantum dots, Jpn. J. Appl. Phys. 34 (1995) L1445-L1447.
  • [2]. Leobandung E., Guo L., Chou SY., Single hole quantum dot transistors in silicon, Appl. Phys. Lett. 67 (1995) 2338-2340.
  • [3]. Durante F., Alves P., Karunasiri G., Hanson N., Byloos M., Liu HC., Bezinger A., Buchanan M., NIR, MWIR and LWIR quantum well infrared photodetector using interband and intersubband transitions, Infrared Phys. Technol. 50 (2007) 182-187.
  • [4]. Nasrallah SAB., Sfina N., Said M., Electronic properties of intersubband transition in (CdS/ZnSe)/BeTe quantum wells, Eur. Phys. J. B 47 (2005) 167-170.
  • [5]. Atanasov R., Bassani F., Agranovich VM., Second-order nonlinear susceptibility of asymmetric quantum wells, Phys. Rev. B 50 (2004) 7809-7819.
  • [6]. En LZ., Xian GK., Polaronic electron-phonon interactions on the third-harmonic generation in a square quantum well, Commun. Theoretical Phys. 45 (2006) 171-174.
  • [7]. Wang G., Guo Q., Second-harmonic generation from nonlocal interaction between terahertz waves and step quantum wells, Superlatt. Microstruc. 47 (2010) 744-753.
  • [8]. Zhang C., Wang Z., Lui Y., Peng C., Guo K.,Polaron effects on the optical refractive index changes in asymmetrical quantum wells, Phys. Lett. A 375 (2011) 484-487.
  • [9]. Martinez-Orozco JC., Mora-Ramos ME., Duque CA., Nonlinear optical rectification and second and third harmonic generation in GaAs -FET systems under hydrostatic pressure, J. Lumin. 132 (2012) 449-456.
  • [10]. Leonora JM., Peter AJ., Lee CW., Polaron effects on the optical properties in a strained diluted magnetic quantum well, Solid State Commun. 152 (2012) 516-521.
  • [11]. Solaimani M., Morteza I., Arabshabi H., Reza SM., Effect of the magnetic field on optical properties of GaN/AlN multiple quantum wells, J. Lumin. 134 (2013) 88-95.
  • [12]. Rojas-Briseno JG., Martinez-Orozco JC., Rodrigues-Vargas I., Mora-Ramos ME., Duque CA., Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double -doped quantum well in GaAs with a Schottky barrier potential, Physica B 424 (2013) 13-19.
  • [13]. Duque CA., Akimov V., Demediuk R., Belykh V., Tiutiunnyk A., Morales AL., Restrepo RL., Mora-Ramos ME., Fomina O., Tulupenco V., Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well, Superlatt. Microstruc. 87 (2015) 125-130.
  • [14]. Zhang ZH., Lui C., Guo KX, Electron-phonon interaction effect on the refractive index changes in a modified Pöschl-Teller quantum well, Optik 127 (2016) 1590-1594.
  • [15]. Aytekin O., Turgut S., Tomak M, Nonlinear optical properties of a Pöcchl-Teller quantum well under electric and magnetic fields, Physica E 44 (2012) 1612-1616.
  • [16]. Panda BK., Panda S., Effect of intense laser field on the nonlinear optical susceptibilities in an asymmetric quantum well, Superlatt. Microstruc. 61 (2013) 124-133.
  • [17]. Campione S., Benz A., Sinclair MB., Capolino F., Brener I., Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum well, Appl. Phys. Lett. 104 (2014) 131104-5.
  • [18]. Karimi MJ., Vafaei H., Intense laser field effects on the linear and nonlinear intersubband optical properties in a strained InGaN/GaN quantum well, Physica B 452 (2014) 131-135.
  • [19]. Martinez-Orozco JC., Rodriquez-Magdaleno KA., Suarez Lopes JR., Duque CA., Restrepo RL., Absorption coefficient and relative refractive index change for a double -doped GaAs MIGFET-like structure: Electric and magnetic field effects, Superlatt. Microstruc. 92, (2016) 166-173.
  • [20]. Li K., Guo K., Jiang X., Hu M., Effect of position-dependent effective mass on nonlinear optical properties in a quantum well, Optik 132 (2017) 375-381.
  • [21]. Nalwa HS. and Miyata S. (Eds.), Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton, FL (1997).
  • [22]. Kasapoglu E., Yesilgul U., Ungan F., Sökmen I., Sari H., The effect of the intense laser field on the electronic states and optical properties of n-type double -doped GaAs quantum wells, Opt. Mat. 64 (2017) 82-87.
  • [23]. Hu M., Guo K., Yu Q., Zhang Z., Third-harmonic generation investigated by a short-range bottomless exponential potential well, Superlattices and Microstructures, 122 (2018) 538-547.
  • [24]. Kasapoglu E., Ungan F., Duque CA., Yesilgul U., Mora-Ramos ME., Sari H., Sökmen I., The effects of the electric and magnetic fields on the optical properties in the step-like asymmetric quantum well, Physica E 61 (2014) 107-110.
There are 24 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Fatih Ungan

Publication Date December 24, 2018
Submission Date November 5, 2018
Acceptance Date November 20, 2018
Published in Issue Year 2018

Cite

APA Ungan, F. (2018). Nonlinear Optical Properties of a Quantum Well With Short-Range Bottomless Exponential Potential. Cumhuriyet Science Journal, 39(4), 934-939. https://doi.org/10.17776/csj.478719