Research Article
BibTex RIS Cite

Treatment of Oily Wastewater by Electrocoagulation Process and Optimization of the Experimental Conditions Using Taguchi Method

Year 2018, , 1127 - 1135, 24.12.2018
https://doi.org/10.17776/csj.395844

Abstract

In this study, electrocoagulation process was
used for chemical oxygen demand (COD), total organic carbon (TOC) and turbidity
removal from oily wastewaters and Taguchi experimental method was used to
determine optimum operational conditions. For this purpose, 5 significant
factors (initial pH, current, electrolysis time, air injection flow and
electrode surface area) effective in COD, TOC and turbidity removal from the
wastewaters were optimized. These experimental factors were handled in 4 levels
and experimental conditions were optimized through performing L16 (54)
tests with orthogonal series of Taguchi method. Optimum conditions were
identified as: initial pH of 6 (pHi level 3), current of 1A (I level
2), electrolysis time of 20 min (ECtime level 4), air injection flow
of 2 L/min (air flow level  3) and
electrode surface area of 210 cm2 (electrode surface area level 2).
Under these conditions, experimental and estimated pollutant removal
efficiencies were respectively identified as 92.1-95.6% for COD, as 78.5-80.2%
for TOC and as 96.2-95.7% for turbidity. Closer experimental and estimated
values indicated the available use of Taguchi method for electrocoagulation
process. 

References

  • [1]. Hildenbrand Z.L., Carlton Jr D.D., Fontenot B.E., Meik J.M., Walton J.L., Thacker J.B., Korlie S., Shelor C.P., Kadjo A.F., Clark A., Usenko S., Hamilton J.S., Mach P.M., Verbeck Iv G.F., Hudak P. and Schug K.A., Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development, Sci. Total Environ. 562 (2016) 906–913.
  • [2]. Hussein M., Amer A.A. and Sawsan I.I., Oil spill sorption using carbonized pith bagasse 1. Preparation and characterization of carbonized pith bagasse, J. Anal. Appl. Pyrolysis 82 (2008) 205–211.
  • [3]. Kajitvichyanukul P., Hung Y.T., Wang L., In: Wang, L., Chen, J., Hung, Y.T., Shammas, N. (Eds.), Membrane and Desalination Technologies. Humana Press, 2011; pp. 639–668.
  • [4]. Suzuki Y. and Maruyama T., Removal of emulsified oil from water by coagulation and foam separation, Sep. Sci. Technol. 40 (2005) 3407–3418.
  • [5]. Zouboulis A.I. and Avranas A., Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation, Colloids Surf. A Physicochem. Eng. Asp. 172 (2000) 153–161.
  • [6]. Gitis V. and Rothenberg G., CeramicMembranes: New Opportunities and Practical Applications. John Wiley & Sons. 2016.
  • [7]. Fox C.H., O'Hara P.D., Bertazzon S., Morgan K., Underwood F.E. and Paquet P.C., A preliminary spatial assessment of risk: marine birds and chronic oil pollution on Canada's Pacific coast, Sci. Total Environ. 573 (2016) 799–809.
  • [8]. Phillips L., Johnson M., Deener K. and Bonanni C., EPA's exposure assessment toolbox (EPA-Expo-Box), J. Environ. Inform. 25 (2015) 81–84.
  • [9]. Noh S.R., Cheong H.K., Ha M., Eom S.Y., Kim H., Choi Y.H. and Paek, D., Oxidative stress biomarkers in long-term participants in clean-up work after the Hebei Spirit oil spill, Sci. Total Environ. 515-516 (2015) 207–214.
  • [10]. Adebajo M.O., Frost R.L., Kloprogge J.T., Carmody O. and Kokot S., Porous materials for oil spill cleanup: a review of synthesis and absorbing properties, J. Porous. Mater. 10 (2003) 159–170.
  • [11]. Husveg T., Rambeau O., Drengstig T. and Bilstad T., Performance of a deoiling hydrocyclone during variable flow rates, Miner. Eng. 20 (2007) 368–379.
  • [12]. Ezzati A., Gorouhi E. and Mohammadi T., Separation of water in oil emulsions using microfiltration, Desalination 185 (2005) 371–382.
  • [13]. Wilkinson D., Waldie B., Mohamad Nor M.I. and Yen Lee H., Baffle plate configurations to enhance separation in horizontal primary separators, Chem. Eng. J. 77 (2000) 221–226.
  • [14]. Ahmadi S., Sardari E., Javadian H.R., Katal R. and Sefti M.V., Removal of oil from biodiesel wastewater by electrocoagulation method, Korean J. Chem. Eng. 30 (2013) 634–641.
  • [15]. El-Naas M.H., Al-Zuhair S., Al-Lobaney A. and Makhlouf S., Assessment of electrocoagulation for the treatment of petroleum refinery wastewater, J. Environ. Manag. 91 (2009) 180–185.
  • [16]. Yavuz Y., Koparal A.S. and Öğütveren Ü.B., Treatment of petroleum refinery wastewater by electrochemical methods, Desalination 258 (2010) 201–205.
  • [17]. Ji M., Jiang X. and Wang F., Amechanistic approach and response surface optimization of the removal of oil and grease from restaurant wastewater by electrocoagulation and electroflotation, Desalin. Water Treat. (2014) 1–9.
  • [18]. Kobya M., Ciftci C., Bayramoglu M. and Sensoy M., Study on the treatment of waste metal cutting fluids using electrocoagulation, Sep. Purif. Technol. 60 (2008) 285–291.
  • [19]. Rincón G.J., and La Motta E.J., Simultaneous removal of oil and grease, and heavymetals from artificial bilge water using electro-coagulation/flotation, J. Environ. Manag. 144 (2014) 42–50.
  • [20]. Ulucan K., Kabuk H.A., Ilhan F., Kurt U., Electrocoagulation process application in bilge water treatment using response surface methodology, Int. J. Electrochem. Sci. 9 (2014) 2316–2326.
  • [21]. Chen G., Electrochemical technologies inwastewater treatment, Sep. Purif. Technol. 38 (2004) 11–41.
  • [22]. Mollah M.Y.A., Morkovsky P., Gomes J.A.G., Kesmez M., Parga J. and Cocke D.L., Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater. 114 (2004) 199–210.
  • [23]. Un, U.T., Koparal, A.S. and Ogutveren, U.B., Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. J. Environ. Manag. 90 (2009) 428–433.
  • [24]. Mehrara H, Roozbehani B, Shishehsaz M.R, Mirdrikvand M. Moqadam S.I., Using Taguchi method to determine optimum process conditions for flue gas desulfurization through an amine scrubber, Clean Technol Environ Policy 16 (2014) 59–67. doi:10.1007/s10098-013-0593-7
  • [25]. Ozyonar F., Treatment of Train Industry Oily Wastewater by Electrocoagulation with Hybrid Electrode Pairs and Different Electrode Connection Modes, Int. J. Electrochem. Sci., 11 (2016) 1456 – 1471.
  • [26]. Apha A Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC, (1998)
  • [27]. Gokkus O. and Yıldız Y.Ş., Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions, Clean Techn Environ Policy, (2014) DOI 10.1007/s10098-014-0897-2.
  • [28]. Taguchi G., Choudhury S. and Wu Y., Quality Engineering:The Taguchi method, in: Taguchi’s Quality Engineering Handbook, John Wiley & Sons, New Jersey, NJ, 2004, ISBN 9780-471-4133-49.
  • [29]. Bensadok K., Benammar S., Lapicque F. and Nezzal G., Electrocoagulation of cutting oil emulsions using aluminium plate electrodes, J. Hazard. Mater. 152 (2008) 423–430.
  • [30]. Bayar S., Yıldız Y.Ş., Yılmaz A.E. and İrdemez, Ş., The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method, Desalination 280 (2011) 103–107.
  • [31]. Daghrir R., Drogui P., François Blais J., and Mercier G., Hybrid process combining electrocoagulation and electro-oxidation processes for the treatment of restaurant wastewaters, J. Environ. Eng. 138 (2012) 1146–1156.
  • [32]. Adhoum N. and Monser L., Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation, Chem. Eng. Process. 43 (2004) 1281–1287.
  • [33]. Maha Lakshmi P. and Sivashanmugam P., Treatment of oil tanning effluent by electrocoagulation: influence of ultrasound and hybrid electrode on COD removal, Sep. Purif. Technol. 116 (2013) 378–384.
  • [34]. Carmona M., Khemis M., Leclerc J.P. and Lapicque F., A simplemodel to predict the removal of oil suspensions from water using the electrocoagulation technique, Chem. Eng. Sci. 61 (2006) 1237–1246.
  • [35]. Xu X. and Zhu X., Treatment of refectory oily wastewater by electro-coagulation process, Chemosphere 56 (2004) 889–894.
  • [36]. Phadke M.S., Kackar R.N., Speeney D.D. and Grieco M.J., Quality control, robust design, and the Taguchi method: off-line quality control in integrated circuit fabrication using experimental design, Springer, US, 1998; pp 99–141.

Elektrokoagulasyon Prosesi ile Yağlı atıksuların Arıtımı ve Taguchi Metodu kullanılarak Deneysel Koşulların Optimizasyonu

Year 2018, , 1127 - 1135, 24.12.2018
https://doi.org/10.17776/csj.395844

Abstract

Bu çalışmada, elektrokoagülasyon prosesiyle
yağlı atık sulardan Kimyasal oksijen ihtiyacı, Bulanıklık ve Toplam organik
madde giderimi araştırılmıştır. Ve Taguchi deneysel metodu kullanılarak optimum
deney şartları belirlenmiştir. Bu amaçla çalışmada, KOİ, Bulanıklık ve TOK
giderimi üzerine etki eden 5 önemli faktör başlangıç pH, akım, Elektroliz
süresi, Hava miktarı, ve elektrot yüzey alanı gibi parametreler optimize
edilmiştir. Bu deneysel faktörler 4 seviyede ele alınarak deney koşulları
taguchi metoduyla ortogenal diziliş ile L16 (54) deney
yapılarak optimize edilmiştir. Deney sonuçlarında elde edilen optimum koşul
olarak başlangıç pH 6 (pHi level 3), Akım 1A (I level 2), Elektroliz
süresi 20 dk( ECtime level 4), Hava miktarı 2 L/dk (air flow
level  3) ve elektrot yüzey alanı 210 cm2
(electrode surface area level 2) bulunmuştur. Bu koşullarda deneysel ve
tahmin edilen kirletici giderme verimleri sırasıyla KOİ %92,1-%95,6, TOK
%78,5-80,2 ve bulanıklık %96,2-95,7 olarak bulunmuştur. Deneysel verim ile
tahmin deneyi arasında elde edilen sonuçlarda yakınlık Taguchi metodunun
kullanımının uygunluğunu göstermektedir.

References

  • [1]. Hildenbrand Z.L., Carlton Jr D.D., Fontenot B.E., Meik J.M., Walton J.L., Thacker J.B., Korlie S., Shelor C.P., Kadjo A.F., Clark A., Usenko S., Hamilton J.S., Mach P.M., Verbeck Iv G.F., Hudak P. and Schug K.A., Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development, Sci. Total Environ. 562 (2016) 906–913.
  • [2]. Hussein M., Amer A.A. and Sawsan I.I., Oil spill sorption using carbonized pith bagasse 1. Preparation and characterization of carbonized pith bagasse, J. Anal. Appl. Pyrolysis 82 (2008) 205–211.
  • [3]. Kajitvichyanukul P., Hung Y.T., Wang L., In: Wang, L., Chen, J., Hung, Y.T., Shammas, N. (Eds.), Membrane and Desalination Technologies. Humana Press, 2011; pp. 639–668.
  • [4]. Suzuki Y. and Maruyama T., Removal of emulsified oil from water by coagulation and foam separation, Sep. Sci. Technol. 40 (2005) 3407–3418.
  • [5]. Zouboulis A.I. and Avranas A., Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation, Colloids Surf. A Physicochem. Eng. Asp. 172 (2000) 153–161.
  • [6]. Gitis V. and Rothenberg G., CeramicMembranes: New Opportunities and Practical Applications. John Wiley & Sons. 2016.
  • [7]. Fox C.H., O'Hara P.D., Bertazzon S., Morgan K., Underwood F.E. and Paquet P.C., A preliminary spatial assessment of risk: marine birds and chronic oil pollution on Canada's Pacific coast, Sci. Total Environ. 573 (2016) 799–809.
  • [8]. Phillips L., Johnson M., Deener K. and Bonanni C., EPA's exposure assessment toolbox (EPA-Expo-Box), J. Environ. Inform. 25 (2015) 81–84.
  • [9]. Noh S.R., Cheong H.K., Ha M., Eom S.Y., Kim H., Choi Y.H. and Paek, D., Oxidative stress biomarkers in long-term participants in clean-up work after the Hebei Spirit oil spill, Sci. Total Environ. 515-516 (2015) 207–214.
  • [10]. Adebajo M.O., Frost R.L., Kloprogge J.T., Carmody O. and Kokot S., Porous materials for oil spill cleanup: a review of synthesis and absorbing properties, J. Porous. Mater. 10 (2003) 159–170.
  • [11]. Husveg T., Rambeau O., Drengstig T. and Bilstad T., Performance of a deoiling hydrocyclone during variable flow rates, Miner. Eng. 20 (2007) 368–379.
  • [12]. Ezzati A., Gorouhi E. and Mohammadi T., Separation of water in oil emulsions using microfiltration, Desalination 185 (2005) 371–382.
  • [13]. Wilkinson D., Waldie B., Mohamad Nor M.I. and Yen Lee H., Baffle plate configurations to enhance separation in horizontal primary separators, Chem. Eng. J. 77 (2000) 221–226.
  • [14]. Ahmadi S., Sardari E., Javadian H.R., Katal R. and Sefti M.V., Removal of oil from biodiesel wastewater by electrocoagulation method, Korean J. Chem. Eng. 30 (2013) 634–641.
  • [15]. El-Naas M.H., Al-Zuhair S., Al-Lobaney A. and Makhlouf S., Assessment of electrocoagulation for the treatment of petroleum refinery wastewater, J. Environ. Manag. 91 (2009) 180–185.
  • [16]. Yavuz Y., Koparal A.S. and Öğütveren Ü.B., Treatment of petroleum refinery wastewater by electrochemical methods, Desalination 258 (2010) 201–205.
  • [17]. Ji M., Jiang X. and Wang F., Amechanistic approach and response surface optimization of the removal of oil and grease from restaurant wastewater by electrocoagulation and electroflotation, Desalin. Water Treat. (2014) 1–9.
  • [18]. Kobya M., Ciftci C., Bayramoglu M. and Sensoy M., Study on the treatment of waste metal cutting fluids using electrocoagulation, Sep. Purif. Technol. 60 (2008) 285–291.
  • [19]. Rincón G.J., and La Motta E.J., Simultaneous removal of oil and grease, and heavymetals from artificial bilge water using electro-coagulation/flotation, J. Environ. Manag. 144 (2014) 42–50.
  • [20]. Ulucan K., Kabuk H.A., Ilhan F., Kurt U., Electrocoagulation process application in bilge water treatment using response surface methodology, Int. J. Electrochem. Sci. 9 (2014) 2316–2326.
  • [21]. Chen G., Electrochemical technologies inwastewater treatment, Sep. Purif. Technol. 38 (2004) 11–41.
  • [22]. Mollah M.Y.A., Morkovsky P., Gomes J.A.G., Kesmez M., Parga J. and Cocke D.L., Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater. 114 (2004) 199–210.
  • [23]. Un, U.T., Koparal, A.S. and Ogutveren, U.B., Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. J. Environ. Manag. 90 (2009) 428–433.
  • [24]. Mehrara H, Roozbehani B, Shishehsaz M.R, Mirdrikvand M. Moqadam S.I., Using Taguchi method to determine optimum process conditions for flue gas desulfurization through an amine scrubber, Clean Technol Environ Policy 16 (2014) 59–67. doi:10.1007/s10098-013-0593-7
  • [25]. Ozyonar F., Treatment of Train Industry Oily Wastewater by Electrocoagulation with Hybrid Electrode Pairs and Different Electrode Connection Modes, Int. J. Electrochem. Sci., 11 (2016) 1456 – 1471.
  • [26]. Apha A Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC, (1998)
  • [27]. Gokkus O. and Yıldız Y.Ş., Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions, Clean Techn Environ Policy, (2014) DOI 10.1007/s10098-014-0897-2.
  • [28]. Taguchi G., Choudhury S. and Wu Y., Quality Engineering:The Taguchi method, in: Taguchi’s Quality Engineering Handbook, John Wiley & Sons, New Jersey, NJ, 2004, ISBN 9780-471-4133-49.
  • [29]. Bensadok K., Benammar S., Lapicque F. and Nezzal G., Electrocoagulation of cutting oil emulsions using aluminium plate electrodes, J. Hazard. Mater. 152 (2008) 423–430.
  • [30]. Bayar S., Yıldız Y.Ş., Yılmaz A.E. and İrdemez, Ş., The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method, Desalination 280 (2011) 103–107.
  • [31]. Daghrir R., Drogui P., François Blais J., and Mercier G., Hybrid process combining electrocoagulation and electro-oxidation processes for the treatment of restaurant wastewaters, J. Environ. Eng. 138 (2012) 1146–1156.
  • [32]. Adhoum N. and Monser L., Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation, Chem. Eng. Process. 43 (2004) 1281–1287.
  • [33]. Maha Lakshmi P. and Sivashanmugam P., Treatment of oil tanning effluent by electrocoagulation: influence of ultrasound and hybrid electrode on COD removal, Sep. Purif. Technol. 116 (2013) 378–384.
  • [34]. Carmona M., Khemis M., Leclerc J.P. and Lapicque F., A simplemodel to predict the removal of oil suspensions from water using the electrocoagulation technique, Chem. Eng. Sci. 61 (2006) 1237–1246.
  • [35]. Xu X. and Zhu X., Treatment of refectory oily wastewater by electro-coagulation process, Chemosphere 56 (2004) 889–894.
  • [36]. Phadke M.S., Kackar R.N., Speeney D.D. and Grieco M.J., Quality control, robust design, and the Taguchi method: off-line quality control in integrated circuit fabrication using experimental design, Springer, US, 1998; pp 99–141.
There are 36 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Fuat Özyonar

Publication Date December 24, 2018
Submission Date February 16, 2018
Acceptance Date October 1, 2018
Published in Issue Year 2018

Cite

APA Özyonar, F. (2018). Treatment of Oily Wastewater by Electrocoagulation Process and Optimization of the Experimental Conditions Using Taguchi Method. Cumhuriyet Science Journal, 39(4), 1127-1135. https://doi.org/10.17776/csj.395844