Araştırma Makalesi
BibTex RIS Kaynak Göster

Fisyon Bariyer Enerjisi ile Kütle Formülündeki Yüzey Enerji Teriminin Tayini

Yıl 2017, , 711 - 715, 08.12.2017
https://doi.org/10.17776/csj.362661

Öz

Atom çekirdeğinin yarı ampirik kütle formülleri çekirdeklerin bağlanma
enerjilerini tanımlar. Bu formüle ait basit yapılandırma ve modelde, nükleer
yapı özellikleriyle ilgili beş terim vardır. Her bir terimdeki katsayılar,
deneysel bağlanma enerji değerlerine uyma gibi çeşitli yaklaşımlarla
belirlenebilir. Bu çalışmada, toplam bağlanma enerjisi üzerinde bir düzeltme
etkisi olan yüzey enerji katsayısı, literatürde daha önce tanımlanmamış bir
yöntemle araştırılmıştır. Bu amaçla çekirdeğin deneysel fisyon bariyer
enerjileri kullanılmıştır. Elde edilen sonuçlara göre en geleneksel
formüllerden birinde yüzey enerji katsayısı 3.4 kat arttırılmıştır.

Kaynakça

  • [1]. Wang N., et al. Surface diffuseness correction in global mass formula. Phys. Lett. B 2014; 734: 215.
  • [2]. Bethe H.A, Bacher R.F. Stationary States of Nuclei. Rev. Mod. Phys. 1936; 8: 82.
  • [3]. Weizsacker C.F. Zur Theorie der Kernmassen. Z. Phys. 1935; 96: 431-458.
  • [4]. Swiatecki W.J. Nuclear Surface Energy and the Diffuseness of the Nuclear Surface. Phys. Rev. 1955; 98: 203.
  • [5]. Kirson M.W. Mutual influence of terms in a semi-empirical mass formula. Nucl. Phys. A 2008; 798: 29-60.
  • [6]. Utama R., Piekarewicz J., Prosper H.B. Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach. Phys. Rev. C 2016; 93: 014311.
  • [7]. Wang N., et al. Mirror nuclei constraint in nuclear mass formula. Phys. Rev. C 2010; 82: 044304.
  • [8]. Myers W.D., Swiatecki W.J. Nuclear masses and deformations. Nucl. Phys. 1966; 81: 1.
  • [9]. Royer G., Subercaze A. Coefficients of different macro–microscopic mass formulae from the AME2012 atomic mass evaluation. Nucl. Phys. A 2013; 917: 1-14.
  • [10]. Nerlo-Pomorska B., et al, Predictions of Nuclear Masses In Different Models, Int. J. Mod. Phys. E 2007, 16: 474.

Surface Energy Coefficient Determination in Global Mass Formula from Fission Barrier Energy

Yıl 2017, , 711 - 715, 08.12.2017
https://doi.org/10.17776/csj.362661

Öz

Semi-empirical mass formulae of the atomic
nucleus describe binding energies of the nuclei. In the simple configuration
and pattern of this formula, there are five terms related to the properties of
the nuclear structure. The coefficients in each terms can be determined by
various approach such as fitting on experimental binding energy values. In this
paper, the surface energy coefficient in the formula which is a correction on
total binding energy has been investigated by a method that is not previously
described in the literature. The experimental fission barrier energies of
nuclei have been used for this task. According to the results, surface energy
coefficient in one of the most conventional formula has been improved by a
factor of 3.4.

Kaynakça

  • [1]. Wang N., et al. Surface diffuseness correction in global mass formula. Phys. Lett. B 2014; 734: 215.
  • [2]. Bethe H.A, Bacher R.F. Stationary States of Nuclei. Rev. Mod. Phys. 1936; 8: 82.
  • [3]. Weizsacker C.F. Zur Theorie der Kernmassen. Z. Phys. 1935; 96: 431-458.
  • [4]. Swiatecki W.J. Nuclear Surface Energy and the Diffuseness of the Nuclear Surface. Phys. Rev. 1955; 98: 203.
  • [5]. Kirson M.W. Mutual influence of terms in a semi-empirical mass formula. Nucl. Phys. A 2008; 798: 29-60.
  • [6]. Utama R., Piekarewicz J., Prosper H.B. Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach. Phys. Rev. C 2016; 93: 014311.
  • [7]. Wang N., et al. Mirror nuclei constraint in nuclear mass formula. Phys. Rev. C 2010; 82: 044304.
  • [8]. Myers W.D., Swiatecki W.J. Nuclear masses and deformations. Nucl. Phys. 1966; 81: 1.
  • [9]. Royer G., Subercaze A. Coefficients of different macro–microscopic mass formulae from the AME2012 atomic mass evaluation. Nucl. Phys. A 2013; 917: 1-14.
  • [10]. Nerlo-Pomorska B., et al, Predictions of Nuclear Masses In Different Models, Int. J. Mod. Phys. E 2007, 16: 474.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Bölüm Natural Sciences
Yazarlar

Serkan Akkoyun

Tuncay Bayram

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 2 Eylül 2017
Kabul Tarihi 14 Kasım 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Akkoyun, S., & Bayram, T. (2017). Surface Energy Coefficient Determination in Global Mass Formula from Fission Barrier Energy. Cumhuriyet Science Journal, 38(4), 711-715. https://doi.org/10.17776/csj.362661