Araştırma Makalesi
BibTex RIS Kaynak Göster

Litolojik Haritalamada Spektral Sınıflandırma: Eşleşen Filtreleme Örnek Çalışması

Yıl 2017, , 731 - 737, 08.12.2017
https://doi.org/10.17776/csj.349590

Öz

Son yıllarda, jeolojik özelliklerin uzaktan algılama ile belirlenmesi ve
yararlılığı konusunda çok sayıda çalışma gerçekleştirilmiştir. Jeolojik
birimler içindeki kaya türlerini ayırtlamak için uydu görüntüleri ve yersel
spectral ölçme verileri kullanılmaktadır. Uzaktan algılama görüntülerinin
kullanılması harita çalışmalarının maliyetini düşürmekte ve zaman tasarrufu
sağlamaktadır. Bu çalışmada, Sivas ili Zara ve Suşehri ilçeleri arasında yer
alan Kösedağ yöresinde kayaç türlerini ayırtlamak ve litolojik birimler
arasındaki dokunakları belirlemek için ASTER SWIR görüntülerinin
kullanılabilirliği araştırılmaktadır. Bu sahada, ofiyolitik, andezitik,
bazaltik ve siyenitik kayaçlar yüzeylemektedir. Bu kayaç türlerinden alınmış
temsili örneklerin spektral özellikleri/belirteçleri ASD spectroradyometre ile
ölçülerek belirlenmiştir. Belirlenmiş özellikler, referans spektra ASTER SWIR
bant dalga boyu aralıklarına yeniden örneklenmiştir. Spektral sınıflandırma
için eşleşen filtreleme (Matched filtering) yöntemi uygulanmıştır. Sonuçlar,
belirtilen kayak tiplerinin ayıtlanmasının mümkün olduğunu ve aralarındaki
sınırların inceleme alanının 1/100.000 ölçekli jeolojik haritası üzerinde
çizilmiş dokunaklar ile çakıştığını göstermiştir.
 

Kaynakça

  • [1]. Kruse F.A. Mapping surface mineralogy using imaging spectrometry, Geomorphology 2011; 137: 41-56
  • [2]. Kruse F.A., Perry S.F. Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery, Remote Sensing, 2013, 5, 2688-2703; doi:10.3390/rs5062688
  • [3]. Canbaz O., Gürsoy, Ö., Gökce A., Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample. Cumhuriyet Science Journal. 2017; 38 (3)419-426.
  • [4]. Strahler A.H., Woodcock C.E., Smith J.A. On the Nature of Models in Remote Sensing. Remote Sensing of Environment 1986; 20: 121-139.
  • [5]. Van der Meer F., de Jong S.M., Improving the Results of Spectral Unmixing of Landsat Thematic Mapper Imagery by Enhancing the Orthogonality of End-Members. International Journal of Remote Sensing 2000; 21: 2781-2797.
  • [6]. Lu D., Weng Q., Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery. Photogrammetric Engineering and Remote Sensing 2004; 70: 1053-1062.
  • [7]. Williams A.P., Hunt E.R.,. Estimation of Leafy Spurge Cover from Hyperspectral Imagery Using Mixture Tuned Matched Filtering. Remote Sensing of Environment 2002; 82: 446-456.
  • [8]. Beiranvand Pour A., Hashim M.,. Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data in Geological Mapping. International Journal of the Physical 2011; 6: 7657-7668.
  • [9]. Okada K., Ishii M. Mineral and lithological mapping using thermal infrared remotely sensed data from ASTER simulator. International Geosciences and Remote Sensing symposium “Better Understanding of Earth Environment”, 1993; 93:.126-128.
  • [10]. Bedell R.L. Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping. Special Publication, Geo. Soc. of Nevada, 2001; 33: 329-334.
  • [11]. Abdeen M.M., Allison T.K., Abdelsalam M.G., Stern R.J. Application of ASTER band-ratio images for geological mapping in arid regions; the Neoproterozoic Allaqi Suture, Egypt. Abstract with Program Geological Society of America, 2001; 3(3), pp.289.
  • [12]. Velosky J.C., Stern R.J., Johnson P.R. Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research, 2003; 123 (2-4): 235-247.
  • [13]. Hewson R.D., Cudahy T.J., Mızuhıko S., Ueda K., Mauger A.J. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 2005; 99: 159-172.
  • [14]. Rowan L.C., Mars J.C., Simpson C.J. Lithologic mapping of the Mordar, NT, Australia, ultramafic complex by using Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) data. Remote Sensing of Environment, 2005; 99: 105-126.
  • [15]. Gürsoy Ö., Kaya Ş. Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image. Journal of the Indian Society of Remote Sensing,2016; 1: pp.1-11
  • [16]. Kalkancı Ş. Şuşehri güneyinin jeolojik ve petrokimyasal etüdü. Kösedağ siyenitik masifinin jeokronolojisi (NE Sivas-Türkiye), 38. Türkiye Jeoloji Kurultayı Bildiri Özetleri, 1978; s. 33-34.
  • [17]. Yılmaz A. Yukarı Kelkit Çayı ile Munzur Dağları arasının temel jeoloji özellikleri ve yapısal evrimi. T.J.K. Bülteni, 1985; 28/2, 79-92. [18]. Boztuğ D. Petrogenesis of the Kosedag Pluton, Susehri-NE Sivas, East-Central Pontides, Turkey. Turkish Journal of Earth Science, 2008; 17 (2): 241-262.
  • [19]. Eyuboglu Y., Dudas F.O., Thorkelson D., Zhu D.C., Liu Z., Catterjee N., Yi K., Santosh M., 2017. Eocene granitoids of northern Turkey: Polybaric magmatism in an evolving arc-slab window system. Gondwana Research, 2017; 50: 311-345.
  • [20]. Başıbüyük Z. Hydrothermal alteration mineralogy-petrography and geochemistry of Eocene volcanics: an example from quadrangle of Zara-İmranlı-Suşehri-Şerefiye (Northeast of Sivas, Central Eastern Anatolia, Turkey). PhD thesis, Sivas-Turkey, Cumhuriyet University, Institute of Science, 2006; pp.269
  • [21]. Gürsoy Ö., Kaya Ş., Çakır Z., Tatar O., Canbaz O. Determining Lateral Offsets of Rocks Along The Eastern Part of The North Anatolian Fault Zone (Turkey) Using Spectral Classification of Satellite Images and Field Measurements. Geomatics, Natural Hazards and Risk, 2017; pp.1-13.
  • [22]. Iwasaki A., Fujisada H., Akao H., Shindou O., Akagi S. Enhancement of spectral separation performance for ASTER/SWIR. Proceedings of SPIE, the International Society for Optical Engineering, 2001;4486, pp. 42-50.
  • [23]. Iwasakı A, Tonoka H. Validation of a crosstalk correction algorithm 371 for ASTER/SIWR. IEEE Transactions on Geoscience and Remote Sensing, 2005; 43: 2747-2751.
  • [24]. Roberts D.A., Yamaguchi Y., Lyon R.J.P. Calibration of Airborne Imaging Spectrometer Data to percent reflectance using field spectral measurements: in Proceedings, Nineteenth International Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, 1985 October 21-25
  • [25]. Abrams M., Hook S.J. Simulated ASTER data for geologic studies IEEE Trans. Geosci. Remote. Sens., 1998; 33 (3): 692-699.
  • [26]. Glenn N.F., Mundt J.T., Weber K.T., Prather T.S., Lass L.W., Pettingill J. Hyperspectral Data Processing for Repeat Detection of Leafy Spurge. Remote Sensing of Environment 2005; 95: 399-412.
  • [27]. Mundt J., Glenn N.F., Weber K.T, Prather T.S., Lass L.W., Pettingill J. Discrimination of Hoary Cress and Determination of Its Detection Limits via Hyperspectral International Journal of Remote Sensing 8815 Downloaded by [Michigan State University] at 06:11 27 November 2013 Image Processing and Accuracy Assessment Techniques. Remote Sensing of Environment 2005; 96: 509-517.
  • [28]. Thome K., Baggar, S., Slater, P. (2001). Effects of assumed solar spectral 464 irradiance on intercomparisons of earth-observing sensors. Proceedings SPIE, v.4540, pp. 260-269.

Spectral Classification in Lithological Mapping; A Case Study of Matched Filtering

Yıl 2017, , 731 - 737, 08.12.2017
https://doi.org/10.17776/csj.349590

Öz

In recent years, a large number of studies have been carried out on
determining geological characteristics using remote sensing studies and their
usefulness. The integrating satellite images and terrestrial spectral data are
used distinguishing lithologies in geological units. The use of remote sensing images
helps to save time and to reduce the cost of mapping works. In this study, the
usability of ASTER SWIR images in distinguishing rock types and in
determination of contacts between lithological units in Kösedağ area between
Zara and Suşehri towns of Sivas Province. Syenitic, andesitic, basaltic and
ophiolitics rocks are cropt out in this area. Spectral signatures of the
representative samples from these rock types were measured via ASD
spectroradiometer. The signatures were resampled to ASTER SWIR bandwidth as end
member. Matched filtering method was performed on the images for spectral
classification. The results showed that distinguishing of the mentioned rock
types is possible and the boundaries between rock types on the spectral images
are mostly coincided with the boundaries on the 1:100.000 scale geological map
of the study area.
  

Kaynakça

  • [1]. Kruse F.A. Mapping surface mineralogy using imaging spectrometry, Geomorphology 2011; 137: 41-56
  • [2]. Kruse F.A., Perry S.F. Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery, Remote Sensing, 2013, 5, 2688-2703; doi:10.3390/rs5062688
  • [3]. Canbaz O., Gürsoy, Ö., Gökce A., Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample. Cumhuriyet Science Journal. 2017; 38 (3)419-426.
  • [4]. Strahler A.H., Woodcock C.E., Smith J.A. On the Nature of Models in Remote Sensing. Remote Sensing of Environment 1986; 20: 121-139.
  • [5]. Van der Meer F., de Jong S.M., Improving the Results of Spectral Unmixing of Landsat Thematic Mapper Imagery by Enhancing the Orthogonality of End-Members. International Journal of Remote Sensing 2000; 21: 2781-2797.
  • [6]. Lu D., Weng Q., Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery. Photogrammetric Engineering and Remote Sensing 2004; 70: 1053-1062.
  • [7]. Williams A.P., Hunt E.R.,. Estimation of Leafy Spurge Cover from Hyperspectral Imagery Using Mixture Tuned Matched Filtering. Remote Sensing of Environment 2002; 82: 446-456.
  • [8]. Beiranvand Pour A., Hashim M.,. Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data in Geological Mapping. International Journal of the Physical 2011; 6: 7657-7668.
  • [9]. Okada K., Ishii M. Mineral and lithological mapping using thermal infrared remotely sensed data from ASTER simulator. International Geosciences and Remote Sensing symposium “Better Understanding of Earth Environment”, 1993; 93:.126-128.
  • [10]. Bedell R.L. Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping. Special Publication, Geo. Soc. of Nevada, 2001; 33: 329-334.
  • [11]. Abdeen M.M., Allison T.K., Abdelsalam M.G., Stern R.J. Application of ASTER band-ratio images for geological mapping in arid regions; the Neoproterozoic Allaqi Suture, Egypt. Abstract with Program Geological Society of America, 2001; 3(3), pp.289.
  • [12]. Velosky J.C., Stern R.J., Johnson P.R. Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research, 2003; 123 (2-4): 235-247.
  • [13]. Hewson R.D., Cudahy T.J., Mızuhıko S., Ueda K., Mauger A.J. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 2005; 99: 159-172.
  • [14]. Rowan L.C., Mars J.C., Simpson C.J. Lithologic mapping of the Mordar, NT, Australia, ultramafic complex by using Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) data. Remote Sensing of Environment, 2005; 99: 105-126.
  • [15]. Gürsoy Ö., Kaya Ş. Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image. Journal of the Indian Society of Remote Sensing,2016; 1: pp.1-11
  • [16]. Kalkancı Ş. Şuşehri güneyinin jeolojik ve petrokimyasal etüdü. Kösedağ siyenitik masifinin jeokronolojisi (NE Sivas-Türkiye), 38. Türkiye Jeoloji Kurultayı Bildiri Özetleri, 1978; s. 33-34.
  • [17]. Yılmaz A. Yukarı Kelkit Çayı ile Munzur Dağları arasının temel jeoloji özellikleri ve yapısal evrimi. T.J.K. Bülteni, 1985; 28/2, 79-92. [18]. Boztuğ D. Petrogenesis of the Kosedag Pluton, Susehri-NE Sivas, East-Central Pontides, Turkey. Turkish Journal of Earth Science, 2008; 17 (2): 241-262.
  • [19]. Eyuboglu Y., Dudas F.O., Thorkelson D., Zhu D.C., Liu Z., Catterjee N., Yi K., Santosh M., 2017. Eocene granitoids of northern Turkey: Polybaric magmatism in an evolving arc-slab window system. Gondwana Research, 2017; 50: 311-345.
  • [20]. Başıbüyük Z. Hydrothermal alteration mineralogy-petrography and geochemistry of Eocene volcanics: an example from quadrangle of Zara-İmranlı-Suşehri-Şerefiye (Northeast of Sivas, Central Eastern Anatolia, Turkey). PhD thesis, Sivas-Turkey, Cumhuriyet University, Institute of Science, 2006; pp.269
  • [21]. Gürsoy Ö., Kaya Ş., Çakır Z., Tatar O., Canbaz O. Determining Lateral Offsets of Rocks Along The Eastern Part of The North Anatolian Fault Zone (Turkey) Using Spectral Classification of Satellite Images and Field Measurements. Geomatics, Natural Hazards and Risk, 2017; pp.1-13.
  • [22]. Iwasaki A., Fujisada H., Akao H., Shindou O., Akagi S. Enhancement of spectral separation performance for ASTER/SWIR. Proceedings of SPIE, the International Society for Optical Engineering, 2001;4486, pp. 42-50.
  • [23]. Iwasakı A, Tonoka H. Validation of a crosstalk correction algorithm 371 for ASTER/SIWR. IEEE Transactions on Geoscience and Remote Sensing, 2005; 43: 2747-2751.
  • [24]. Roberts D.A., Yamaguchi Y., Lyon R.J.P. Calibration of Airborne Imaging Spectrometer Data to percent reflectance using field spectral measurements: in Proceedings, Nineteenth International Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, 1985 October 21-25
  • [25]. Abrams M., Hook S.J. Simulated ASTER data for geologic studies IEEE Trans. Geosci. Remote. Sens., 1998; 33 (3): 692-699.
  • [26]. Glenn N.F., Mundt J.T., Weber K.T., Prather T.S., Lass L.W., Pettingill J. Hyperspectral Data Processing for Repeat Detection of Leafy Spurge. Remote Sensing of Environment 2005; 95: 399-412.
  • [27]. Mundt J., Glenn N.F., Weber K.T, Prather T.S., Lass L.W., Pettingill J. Discrimination of Hoary Cress and Determination of Its Detection Limits via Hyperspectral International Journal of Remote Sensing 8815 Downloaded by [Michigan State University] at 06:11 27 November 2013 Image Processing and Accuracy Assessment Techniques. Remote Sensing of Environment 2005; 96: 509-517.
  • [28]. Thome K., Baggar, S., Slater, P. (2001). Effects of assumed solar spectral 464 irradiance on intercomparisons of earth-observing sensors. Proceedings SPIE, v.4540, pp. 260-269.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Bölüm Natural Sciences
Yazarlar

Önder Gürsoy 0000-0002-1531-135X

Oktay Canbaz 0000-0002-8161-1326

Ahmet Gökçe

Rutkay Atun

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 6 Kasım 2017
Kabul Tarihi 21 Kasım 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Gürsoy, Ö., Canbaz, O., Gökçe, A., Atun, R. (2017). Spectral Classification in Lithological Mapping; A Case Study of Matched Filtering. Cumhuriyet Science Journal, 38(4), 731-737. https://doi.org/10.17776/csj.349590