Allium vineale’dan izole edilen
kiseriol-7-O-[2''-O-E-ferulil]-β-D-glukosit
(1), kiseriol (2) ve isorhamnetin-3- β-D-glukosit
(3) bileşiklerinin kimyasal özellikleri teorik olarak araştırıldı. Bu
bileşiklerin kimyasal özellikleri hesaplanırken RHF/STO-3G metodu kullanıldı.
Bileşiklerin optimizasyonu ve sonuçların değerlendirilmesi bu metodla
gerçekleştirildi. Bileşiklerin özellikleri ortaya kondu, ayrıca teorik ve
deneysel sonuçların karşılaştırılması ile ilgili bileşiklerin değişik
alanlardaki kullanımları araştırıldı. Bileşiklerin antioksidan özellikleri daha
önce rapor edildi. Hesaplamalar, kiseriol (2)
bileşiğinin kararsız ve radikal bileşiklerle tepkime verme eğiliminde olduğunu
gösterdi. Özetle, antioksidan bileşikler radikal bileşiklere kolaylıkla
hidrojen vermektedir.
[1]. Erenler R., Telci I., Ulutas M., Demirtas I., Gul F., Elmastas M. and Kayir O., Chemical Constituents, Quantitative Analysis and Antioxidant Activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt., J. Food Biochem, 39 (2015) 622-630.
[2] Erenler R., Yilmaz S., Aksit H., Sen O., Genc N., Elmastas M. and Demirtas I., Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv., Rec. Nat. Prod., 8 (2014) 32-36.
[3] Erenler R., Meral B., Sen O., Elmastas M., Aydin A., Eminagaoglu O. and Topcu G., Bioassay-Guided Isolation, Identification of Compounds from Origanum rotundifolium and Investigation of Their Antiproliferative and Antioxidant Activities, Pharm. Biol., 55 (2017) 1646-1653.
[4] Erenler R., Sen O., Aksit H., Demirtas I., Yaglioglu A. S., Elmastas M. and Telci I., Isolation and Identification of Chemical Constituents from Origanum majorana and Investigation of Antiproliferative and Antioxidant Activities, J. Sci. Food Agr., 96 (2016) 822-836.
[5] Erenler R., Sen O., Yildiz I. and Aydin A., Antiproliferative Activities of Chemical Constituents Isolated from Thymus praecox Subsp grossheimii (Ronniger) Jalas, Rec. Nat. Prod., 10 (2016) 766-770.
[6] Codorniu-Hernández E., Mesa-Ibirico A., Montero-Cabrera L. A., Martı́nez-Luzardo F., Borrmann T., Stohrer W.-D. Theoretical Study of Flavonoids and Proline Interactions. Aqueous and Gas Phases, J. Mol. Struct., 623 (2003) 63-73.
[7] Kumar S., Pandey A. K. Chemistry and Biological Activities of Flavonoids: An Overview, Sci. World J., (2013); 1-16.
[8] Ross J. A., Kasum C. M. Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety, Annu. Rev. Nutr.,2002; 22: 19-34.
[9] Peterson J. and Dwyer J., Flavonoids: Dietary Occurrence and Biochemical Activity, Nutr. Res., 18 (1998) 1995-2018.
[10] Trischitta F. and Faggio C., Effect of the Flavonol Quercetin on Ion Transport in the Isolated Intestine of the Eel, Anguilla anguilla, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 143 (2006) 17-22.
[11] Cook N. and Samman S., Flavonoids-Chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources, J. Nutr. Biochem., 7 (1996) 66-76.
[12] Erlund I., Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology, Nutr. Res., 24 (2004) 851-874.
[13] Costa D. C., Costa H., Albuquerque T. G., Ramos F., Castilho M. C. and Sanches-Silva A., Advances in Phenolic Compounds Analysis of Aromatic Plants and Their Potential Applications, Trends Food Sci. Technol., 45 (2015) 336-354.
[14] Bie B., Sun J., Guo Y., Li J., Jiang W., Yang J., Huang C. and Li Z., Baicalein: A Review of Its Anti-Cancer Effects and Mechanisms in Hepatocellular Carcinoma, Biomed. Pharmacother., 93 (2017) 1285-1291.
[15] Gullón B., Lú-Chau T. A., Moreira M. T., Lema J. M., Eibes G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability, Trends Food Sci. Technol., 67 (2017) 220-235.
[16] Palacz-Wrobel M., Borkowska P., Paul-Samojedny M., Kowalczyk M., Fila-Danilow A., Suchanek-Raif R. and Kowalski J., Effect of Apigenin, Kaempferol and Resveratrol on the Gene Expression and Protein Secretion of Tumor Necrosis Factor alpha (TNF-ɑ) and Interleukin-10 (IL-10) in Raw-264.7 Macrophages, Biomed. Pharmacother., 93 (2017) 1205-1212.
[17] Bakhtiari M., Panahi Y., Ameli J., Darvishi B. Protective Effects of Flavonoids against Alzheimer’s Disease-Related Neural Dysfunctions, Biomed. Pharmacother., 93 ( 2017) 218-229.
[18] Demirtas I., Erenler R., Elmastas M., Goktasoglu A. Studies on the Antioxidant Potential of Flavones of Allium Vineale Isolated from Its Water-Soluble Fraction, Food Chem., 136 (2013) 34-40.
[19] Musa A. Y., Kadhum A. A. H., Mohamad A. B., Rahoma A. A. B., Mesmari H. Electrochemical and Quantum Chemical Calculations on 4, 4-Dimethyloxazolidine-2-Thione as Inhibitor for Mild Steel Corrosion in Hydrochloric Acid, J. Mol. Struct.: Theochem.,969 ( 2010) 233-237.
[20] Geerlings P., De Proft F. and Langenaeker W., Conceptual Density Functional Theory, Chem. Rev., 103 (2003) 1793-1874.
[21] Tanak H., Quantum Chemical Computational Studies on 2-Methyl-6-[2-(Trifluoromethyl) Phenyliminomethyl] Phenol, J. Mol. Struct.: Theochem., 950 (2010) 950: 5-12.
[22] Boukli-Hacene F., Merad M., Ghalem S. and Soufi W. Dft Study of the Interaction of Cu (Ii), Zn (Ii), Sn (Ii) with Carbohydrates in Aqueous Solution, J. Chem., 8 ( 2014) 1009-1017.
Theoretical Study on Flavonoids Isolated from Allium vineale
The chemical properties of chrysoeriol-7-O-[2''-O-E-feruloyl]-β-D-glucoside
(1), chrysoeriol (2), and isorhamnetin-3-β-D-glucoside (3) from Allium vineale
have been investigated as theoretical. RHF/STO-3G method was used for quantum
calculations of chemical properties of these compounds. The structures of the
compounds were fully optimized and then the results were evaluated by this
method. The properties of compounds were presented and the utilization of these
compounds in various fields was investigated by comparison of theoretical
results with experimental ones. The experimental antioxidant effects were
reported previously. The quantum calculations revealed that chrysoeriol (2) was unstable and was prone to react
to the radical compounds. In brief, a good antioxidant can donate the electron
to the radical compound easily.
[1]. Erenler R., Telci I., Ulutas M., Demirtas I., Gul F., Elmastas M. and Kayir O., Chemical Constituents, Quantitative Analysis and Antioxidant Activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt., J. Food Biochem, 39 (2015) 622-630.
[2] Erenler R., Yilmaz S., Aksit H., Sen O., Genc N., Elmastas M. and Demirtas I., Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv., Rec. Nat. Prod., 8 (2014) 32-36.
[3] Erenler R., Meral B., Sen O., Elmastas M., Aydin A., Eminagaoglu O. and Topcu G., Bioassay-Guided Isolation, Identification of Compounds from Origanum rotundifolium and Investigation of Their Antiproliferative and Antioxidant Activities, Pharm. Biol., 55 (2017) 1646-1653.
[4] Erenler R., Sen O., Aksit H., Demirtas I., Yaglioglu A. S., Elmastas M. and Telci I., Isolation and Identification of Chemical Constituents from Origanum majorana and Investigation of Antiproliferative and Antioxidant Activities, J. Sci. Food Agr., 96 (2016) 822-836.
[5] Erenler R., Sen O., Yildiz I. and Aydin A., Antiproliferative Activities of Chemical Constituents Isolated from Thymus praecox Subsp grossheimii (Ronniger) Jalas, Rec. Nat. Prod., 10 (2016) 766-770.
[6] Codorniu-Hernández E., Mesa-Ibirico A., Montero-Cabrera L. A., Martı́nez-Luzardo F., Borrmann T., Stohrer W.-D. Theoretical Study of Flavonoids and Proline Interactions. Aqueous and Gas Phases, J. Mol. Struct., 623 (2003) 63-73.
[7] Kumar S., Pandey A. K. Chemistry and Biological Activities of Flavonoids: An Overview, Sci. World J., (2013); 1-16.
[8] Ross J. A., Kasum C. M. Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety, Annu. Rev. Nutr.,2002; 22: 19-34.
[9] Peterson J. and Dwyer J., Flavonoids: Dietary Occurrence and Biochemical Activity, Nutr. Res., 18 (1998) 1995-2018.
[10] Trischitta F. and Faggio C., Effect of the Flavonol Quercetin on Ion Transport in the Isolated Intestine of the Eel, Anguilla anguilla, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 143 (2006) 17-22.
[11] Cook N. and Samman S., Flavonoids-Chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources, J. Nutr. Biochem., 7 (1996) 66-76.
[12] Erlund I., Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology, Nutr. Res., 24 (2004) 851-874.
[13] Costa D. C., Costa H., Albuquerque T. G., Ramos F., Castilho M. C. and Sanches-Silva A., Advances in Phenolic Compounds Analysis of Aromatic Plants and Their Potential Applications, Trends Food Sci. Technol., 45 (2015) 336-354.
[14] Bie B., Sun J., Guo Y., Li J., Jiang W., Yang J., Huang C. and Li Z., Baicalein: A Review of Its Anti-Cancer Effects and Mechanisms in Hepatocellular Carcinoma, Biomed. Pharmacother., 93 (2017) 1285-1291.
[15] Gullón B., Lú-Chau T. A., Moreira M. T., Lema J. M., Eibes G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability, Trends Food Sci. Technol., 67 (2017) 220-235.
[16] Palacz-Wrobel M., Borkowska P., Paul-Samojedny M., Kowalczyk M., Fila-Danilow A., Suchanek-Raif R. and Kowalski J., Effect of Apigenin, Kaempferol and Resveratrol on the Gene Expression and Protein Secretion of Tumor Necrosis Factor alpha (TNF-ɑ) and Interleukin-10 (IL-10) in Raw-264.7 Macrophages, Biomed. Pharmacother., 93 (2017) 1205-1212.
[17] Bakhtiari M., Panahi Y., Ameli J., Darvishi B. Protective Effects of Flavonoids against Alzheimer’s Disease-Related Neural Dysfunctions, Biomed. Pharmacother., 93 ( 2017) 218-229.
[18] Demirtas I., Erenler R., Elmastas M., Goktasoglu A. Studies on the Antioxidant Potential of Flavones of Allium Vineale Isolated from Its Water-Soluble Fraction, Food Chem., 136 (2013) 34-40.
[19] Musa A. Y., Kadhum A. A. H., Mohamad A. B., Rahoma A. A. B., Mesmari H. Electrochemical and Quantum Chemical Calculations on 4, 4-Dimethyloxazolidine-2-Thione as Inhibitor for Mild Steel Corrosion in Hydrochloric Acid, J. Mol. Struct.: Theochem.,969 ( 2010) 233-237.
[20] Geerlings P., De Proft F. and Langenaeker W., Conceptual Density Functional Theory, Chem. Rev., 103 (2003) 1793-1874.
[21] Tanak H., Quantum Chemical Computational Studies on 2-Methyl-6-[2-(Trifluoromethyl) Phenyliminomethyl] Phenol, J. Mol. Struct.: Theochem., 950 (2010) 950: 5-12.
[22] Boukli-Hacene F., Merad M., Ghalem S. and Soufi W. Dft Study of the Interaction of Cu (Ii), Zn (Ii), Sn (Ii) with Carbohydrates in Aqueous Solution, J. Chem., 8 ( 2014) 1009-1017.
Karan, T., Gokalp, F., & Erenler, R. (2018). Theoretical Study on Flavonoids Isolated from Allium vineale. Cumhuriyet Science Journal, 39(1), 66-70. https://doi.org/10.17776/csj.342297