In this paper, we study the magnetic curves on a Kähler manifold which is conformally equivalent to Euclidean Schwarzschild space. We show that Euclidean Schwarzschild space is locally conformally Kähler and transform it into a Kähler space by applying a conformal factor coming from its Lee form. We solve Lorentz equation to find analytical expressions for magnetic curves which are compatible with the almost complex structure of the proposed Kähler manifold. We also calculate the energy of magnetic curves.
Magnetic curve Lorentz equation Kähler magnetic fields Euclidean Schwarzschild metric
Birincil Dil | İngilizce |
---|---|
Konular | Klasik Fizik (Diğer), Uygulamalı Matematik (Diğer) |
Bölüm | Natural Sciences |
Yazarlar | |
Yayımlanma Tarihi | 28 Mart 2024 |
Gönderilme Tarihi | 5 Aralık 2023 |
Kabul Tarihi | 4 Mart 2024 |
Yayımlandığı Sayı | Yıl 2024 |