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Introduction 
 
The path of a charged particle moving on a manifold 

under the influence of a magnetic field is characterized by 
a magnetic curve. Generally, a magnetic field is defined by 
a closed 2-form (B) on a Riemannian manifold (M, g). The 
magnetic trajectories associated with the magnetic field 
are the curves γ on M that satisfy the Lorentz equation,  

𝛻𝛾
. 𝛾
.
= 𝑞𝜙𝛾

.
                            (1) 

where ∇ is the Levi-Civita connection of g, q is a physical 
constant called charge, and ϕ is an anti-symmetric (1,1) 
tensor field called the Lorentz force. Magnetic field and 
Lorentz force are metrically equivalent such that 
B(X,Y)=g(ϕ(X),Y) , ∀ X,Y ϵ 𝔛. Note that the Lorentz equation 
becomes geodesic equation for B=0. Anti-symmetric (1,1) 
tensor field in (1) becomes almost complex structure J for 
almost complex manifolds. Magnetic curves are generally 
labelled according to the studied ambient space. If the 
ambient space is a Kähler manifold the magnetic curves 
associated with it are called Kähler magnetic curves. 
Similarly, if the ambient space is a contact manifold, then 
the magnetic curves on it are called contact magnetic 
curves. There are also F-planar curves which generalize  
the magnetic curves and hence, the geodesics [1].  

There has been significant amount of research on 
contact magnetic fields in three-dimensional model 
spaces of Thurston geometry [2-9]. Studies on Kähler 
magnetic curves in non-flat Kähler space forms were 
initiated by works of Adachi [10-12]. Adachi showed that 
every trajectory associated with a Kähler magnetic field on 
a complex projective space ℂℙn(c), (c > 0),  is a small circle 
on a totally geodesic embedded 2-sphere [10]. Same 
author also obtained explicit expressions for magnetic 
curves in complex hyperbolic spaces ℂℍn(-c), (c > 0) [11]. 
Kalinin studied Kähler magnetic fields and their 
trajectories on Kähler manifolds of constant holomorphic 

sectional curvature [13]. In that study, Kalinin obtained 
differential equations deduced from Lorentz equation, 
but he did not provide solutions to those equations. 
Another line of research was initiated by studying J-
trajectories in locally conformally Kähler (lcK) manifolds 
which are solutions of equation (1) for almost complex 
manifolds. Ateş, Munteanu and Nistor investigated 
trajectories in ℝ×S3 [14], and the results were extended to 
arbitrary Vaisman manifolds in [15]. Moreover, Inoguchi 
showed that J-trajectories in a lcK manifold with parallel 
anti Lee field are of osculating order at most 3 [16]. 

Jleli and Munteanu showed that spacelike and timelike 
magnetic trajectories corresponding to the para-Kähler 2-
form on a para-Kähler manifold are circles [17]. Erjavec 
and Inoguchi studied magnetic curves on ℍ3×ℝ with 
respect to the strictly almost Kähler structure and 
obtained explicit expressions for magnetic curves which 
correspond to the almost complex structure compatible 
with the product metric [18]. Despite the existence of 
these studies about Kähler magnetic curves, there are few 
studies which concentrate on explicit construction of 
Kähler magnetic curves on frequently studied Kähler 
spaces in physics literature. Our study aims to make a 
better connection in this sense and potentially provide 
new research problems. We chose Euclidean 
Schwarzschild space for this purpose. As will be shown in 
the next section Euclidean Schwarzschild space is not 
Kähler but locally conformally Kähler. This fact was briefly 
mentioned in [19]. Schwarzschild space and its Euclidean 
version have been studied extensively in physics 
literature. A recent paper focusing on the detailed analysis 
of geodesic motion in Euclidean Schwarzschild geometry 
is more relevant to our study [20]. We refer to the 
introduction of that paper for a broader literature review 
on Euclidean Schwarzschild space. 

This paper is structured as follows. In Section 2, we 
give the basic geometric structure of Euclidean 
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Schwarzschild space, show that it is locally conformally 
Kähler and obtain its Kähler counterpart. In Section 3, we 
solve Lorentz equation to find analytical expressions for 
magnetic curves which are compatible with the almost 
complex structure of the Kähler space and also calculate 

the energy of these magnetic curves. Finally, we 
summarize the results and give potential research 
problems in Section 4. 

 

Geometry of Euclidean Schwarzschild Space and Its Conformal Transformation 
 
Euclidean Schwarzschild space is a complete solution to the Euclidean Einstein equations with zero cosmological 

constant (Λ) and it is characterized by the non-trivial topology of ℝ2×S2 [21]. Metric for Euclidean Schwarzschild (ES) 
space is given by  

(1 −
2𝑚

𝑟
) dτ2 + (1 −

2𝑚

𝑟
)
−1

dr2 + 𝑟2(dθ2 + sin2𝜃dϕ2)            (2) 

It was shown that ES manifold  admits a complex Hermitian structure [22]. Hermitian 2-form ω of a complex manifold 
(M2n,g, J) is an element of Λ2 (bundle of 2-forms on M) for which self-dual (Ω+) and anti-self-dual (Ω−) bases can be 
defined as 

      Ω± = {𝒆1 ∧ 𝒆2 ± 𝒆3 ∧ 𝒆4, 𝒆1 ∧ 𝒆3 ± 𝒆4 ∧ 𝒆2, 𝒆1 ∧ 𝒆4 ± 𝒆2 ∧ 𝒆3}                                           (3) 

where 𝒆i’s are orthonormal basis one-forms. We use the following  orthonormal frame and the corresponding dual co-
frame on ES space to describe its geometric structure . 

{𝒆1, 𝒆2, 𝒆3, 𝒆4} = { (1 − 2𝑚 𝑟⁄ )−1 2⁄  𝜕𝜏 , (1 − 2𝑚 𝑟⁄ )1 2⁄ 𝜕𝑟 , (𝑟 sinθ)
−1 𝜕ϕ, 𝑟

−1 𝜕θ}        (4) 

{𝒆1, 𝒆2, 𝒆3, 𝒆4} = {(1 − 2𝑚 𝑟⁄ )1 2⁄ dτ, (1 − 2𝑚 𝑟⁄ )−1 2⁄ dr, 𝑟 𝑠inθ dϕ, 𝑟 dθ}         (5) 

where ∂x≡∂/∂x. The  fundamental 2-form ω for a Hermitian manifold is given by          

   ω(X, Y) = g(JX, Y)      X, Y ϵ TpM                                     

We choose the orientation (𝒆1 ∧ 𝒆2 ∧ 𝒆3 ∧ 𝒆4) and the fundamental 2-form ω = 𝒆1 ∧ 𝒆2 +  𝒆3 ∧ 𝒆4  so that ω 
becomes self-dual. Almost complex structure that will yield the 2-form ω with respect to the chosen orientation will be: 

𝑱 𝒆1 = 𝒆2  ,  𝑱 𝒆2 = −𝒆1     ,  𝑱 𝒆3 = 𝒆4  , 𝑱 𝒆4 = −𝒆3                                             (6) 

Fundamental 2-form ω and coefficients of almost complex structure J can be written in coordinates as the following. 

𝜔 = dτ ∧ dr + 𝑟2sinθ dϕ ∧ dθ                                                                    (7) 

𝐽 =

(

 
 

0
𝑟−2𝑚

𝑟
0 0

𝑟

2𝑚−𝑟
0 0 0

0 0 0 sinθ
0 0 −(sinθ)−1 0 )

 
 

                                    

It is easy to see that the ω given above and other ω’s formed by elements of Ω± are not closed (d𝜔 ≠ 0). Hence, ES 
manifold is not Kähler in its current form. A Hermitian manifold (M2n,g, J) is called locally conformally Kähler (l.c.K) if and 
only if there exists a globally defined closed 1-form (called Lee form) ξ on M2n so that  

𝑑𝜔 = ξ ∧ 𝜔                                                                                            (8) 

Furthermore, it was shown that if ξ is exact (ξ = df) then there exists a Kähler metric �̂� obtained by applying a 
conformal factor to the original metric 𝑔 [23]: 

�̂� = 𝑒−𝑓𝑔                                                                                                 (9) 

We find that the 1-form ξ = 2dr/r is satisfying (8), hence conclude that ES manifold is locally conformally Kähler. 
The corresponding Kähler metric is obtained as: 

�̂� =
1

𝑟2
(1 −

2𝑚

𝑟
) dτ2 +

1

𝑟2
(1 −

2𝑚

𝑟
)
−1

dr2 + dθ2 + sin2𝜃dϕ2                (10) 

Magnetic curves will be constructed by using this Kähler metric associated to the space which we call conformally 
Euclidean Schwarzschild space. It will be convenient to use the orthonormal frame and the dual co-frame given in (4)-
(5) scaled by r and 1/r, respectively. We work with the same orientation and fundamental 2-form given in basis 1-forms 
as 
ω̂ = �̂�1 ∧ �̂�2 + �̂�3 ∧ �̂�4 
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     =
1

𝑟2
dτ ∧ dr + sinθ dϕ ∧ dθ                                                               (11) 

This 2-form ω̂ is closed as expected. Therefore, we obtained a Kähler manifold (M̂2𝑛, �̂�, J) with the orthonormal 
frame and the corresponding dual co-frame given as 

{�̂�1, �̂�2, �̂�3, �̂�4} = { 𝑟(1 − 2𝑚 𝑟⁄ )−1 2⁄  𝜕𝜏  , 𝑟(1 − 2𝑚 𝑟⁄ )1 2⁄ 𝜕𝑟 , (sinθ)
−1 𝜕ϕ, 𝜕θ}                             (12)    

{�̂�1, �̂�2, �̂�3, �̂�4} = {𝑟−1(1 − 2𝑚 𝑟⁄ )1 2⁄ dτ, 𝑟−1(1 − 2𝑚 𝑟⁄ )−1 2⁄ dr, 𝑠inθ dϕ, dθ}                                            (13) 

Following  covariant derivatives are obtained by using the orthonormal frame given above  

∇�̂�1�̂�1 =  𝑟
−1(1 − 2𝑚 𝑟⁄ )−1 2⁄ (𝑟 − 3𝑚)�̂�2 , ∇�̂�1�̂�2 =  𝑟

−1(1 − 2𝑚 𝑟⁄ )−1 2⁄ (3𝑚 − 𝑟)�̂�1 

∇�̂�3�̂�3 = −𝑐𝑜𝑡θ �̂�4   ,  ∇�̂�3�̂�4 = 𝑐𝑜𝑡θ �̂�3                                                                                                                    (14) 

consisting of only non-zero (∇�̂�𝑖�̂�𝑗 ≠ 0) derivatives. 

 

Magnetic Curves in Conformally Euclidean Schwarzschild Space 
 
Let us consider a smooth curve γ(s) parameterized by its arclength in conformally ES space. 

γ(𝑠) = (τ(𝑠), 𝑟(𝑠), ϕ(𝑠), θ(𝑠)) 

We will be searching for solutions to the Lorentz equation 𝛻γ̇γ̇ = 𝑞𝐽(γ̇) , hence 𝛾(𝑠) will be a magnetic curve. Note 

that we consider charged particles with unit mass (mp=1). It is known that a trajectory for a Kähler magnetic field is 
characterized by the motion of a charged particle with unit mass, maintaining a constant speed under the influence of 
this magnetic field [12]. The unit tangent vector field can be written as 

γ̇(𝑠) = τ̇(𝑠)𝜕𝜏 + �̇�(𝑠)𝜕𝑟 + �̇�(𝑠)𝜕𝜙 + θ̇(𝑠)𝜕𝜃                                                                     (15) 

          =
τ̇(𝑠)√1−2𝑚 𝑟(𝑠)⁄  

𝑟(𝑠)
 �̂�1+ 

�̇�(𝑠)

𝑟(𝑠)√1−2𝑚 𝑟(𝑠)⁄
 �̂�2 + �̇�(𝑠)sin(θ(𝑠)) �̂�3 + θ̇(𝑠)�̂�4      

Now we can apply J on γ̇ to compute the right-hand side of Lorentz equation 

    𝐽(γ̇) = −
�̇�(𝑠) 

𝑟(𝑠)√1−2𝑚 𝑟(𝑠)⁄
 �̂�1 +

τ̇(𝑠)√1−2𝑚 𝑟(𝑠)⁄  

𝑟(𝑠)
 �̂�2 − θ̇(𝑠)�̂�3 + �̇�(𝑠)sin(θ(𝑠)) �̂�4                              (16) 

Then the left-hand side of the Lorentz equation can be computed by using the covariant derivatives given in (14). 
 

𝛻γ̇γ̇ =
(2(3𝑚−𝑟(𝑠))�̇�(𝑠)τ̇(𝑠)+𝑟(𝑠)(𝑟(𝑠)−2𝑚)τ̈(𝑠))

𝑟(𝑠)5/2 (𝑟(𝑠)−2𝑚)1/2
�̂�1 + 

                    
(−12𝑚3τ̇(𝑠)2+16𝑚2𝑟(𝑠)τ̇(𝑠)2+𝑚𝑟(𝑠)2(�̇�(𝑠)2−7τ̇(𝑠)2)+𝑟(𝑠)3(−2𝑚�̈�(𝑠)−�̇�(𝑠)2+τ̇(𝑠)2)+𝑟(𝑠)4�̈�(𝑠))

𝑟(𝑠)7/2(𝑟(𝑠)−2𝑚)3/2
�̂�2+  (2cos(𝜃(𝑠))θ̇(𝑠)�̇�(𝑠) +

                    sin(𝜃(𝑠))�̈�(𝑠))�̂�3 + (θ̈(𝑠) − sin(𝜃(𝑠))cos(𝜃(𝑠))�̇�(𝑠)
2)�̂�4                (17) 

The following system of ordinary differential equations are obtained by combining equations (16) and (17) which 
basically form the Lorentz equation for conformally ES space.   

 

  
�̇�(𝑞𝑟2+2(3𝑚−𝑟)τ̇)+𝑟 (𝑟−2𝑚)τ̈

𝑟5 2⁄ (𝑟−2𝑚)1 2⁄ = 0                (18) 

  
−12𝑚3τ̇2+16𝑚2𝑟 τ̇2−𝑞𝑟2(𝑟−2𝑚)2τ̇+𝑚𝑟2(�̇�2−7τ̇2)+𝑟3(τ̇2−�̇�2−2𝑚�̈�)+𝑟4�̈�

𝑟7 2⁄ (𝑟−2𝑚)3 2⁄ = 0                                   (19) 

  θ̇(𝑞 + 2cosθ �̇�) + sinθ �̈� = 0                                                                 (20) 

  θ̈ − sinθ �̇�(𝑞 + cosθ �̇�) = 0                                                                       (21) 

Let’s rewrite equation (18) as 

�̇�(𝑞 𝑟2 + 4(2𝑚 − 𝑟)τ̇) + 𝜕𝑠((𝑟
2 − 2𝑚𝑟)τ̇)                                                       (22) 

Define a function 𝑓(𝑠) 

𝑓(𝑠) = (𝑟(𝑠)2 − 2𝑚 𝑟(𝑠))τ̇(𝑠)                                                      (23) 

Using 𝑓(𝑠) in equation (22) gives 

𝑞𝑟(𝑠)2�̇�(𝑠)  −
4𝑓(𝑠)

𝑟(𝑠)
�̇�(𝑠) + 𝑓̇(𝑠) = 0                                                            (24) 

Multiplying both sides of equation (24) by 𝑟(𝑠)−4 
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𝑞𝑟(𝑠)−2�̇�(𝑠) − 4𝑓(𝑠)𝑟(𝑠)−5�̇�(𝑠) + 𝑓̇(𝑠)𝑟(𝑠)−4 = 0 

which can be written as an exact differential 

   𝜕𝑠(𝑓(𝑠)𝑟(𝑠)
−4 − 𝑞𝑟(𝑠)−1) = 0 

  𝑓(𝑠)𝑟(𝑠)−4 − 𝑞𝑟(𝑠)−1 = 𝑎 ⇒  𝑓(𝑠) = 𝑞𝑟(𝑠)3 +𝑎 𝑟(𝑠)4                                    (25) 

Then insert this in (23)  

τ̇(𝑠) =
𝑓(𝑠)

𝑟(𝑠)2−2𝑚 𝑟(𝑠)
=
𝑞𝑟(𝑠)2 +𝑎 𝑟(𝑠)3

𝑟(𝑠)−2𝑚 
                                (26)               

Finally integrating (26) we get 

τ(𝑠) = 𝑏 + ∫
𝑟(𝑠)2(𝑞+𝑎 𝑟(𝑠))

𝑟(𝑠)−2𝑚
𝑑𝑠                                                                         (27) 

where 𝑎 and b are arbitrary constants. Inserting this in equation (19) yields: 

   𝑎2𝑟5 + 𝑎𝑟4(𝑞 − 3𝑎 𝑚) − 4𝑎 𝑚𝑞𝑟3 + 𝑟2(�̈� − 𝑚𝑞2) + 𝑚�̇�2 − 𝑟(2𝑚 �̈� + �̇�2) = 0                               (28) 

We couldn’t find analytical solutions to equation (28), so we set 𝑎 = 0 in equation (27) which then gives the following 
ODE 

𝑟2(�̈� − 𝑚𝑞2) + 𝑚�̇�2 − 𝑟(2𝑚 �̈� + �̇�2) = 0                                                               (29) 

Note that some numerical solutions can be found for equation (28) with 𝑎 as non-zero constant. But in this study we 
are interested in exact solutions, so we will concentrate our focus on analytical solutions. It is possible to find some 
analytical solutions with 𝑎 ≠ 0, such as r=constant and τ(𝑠) = 𝑐𝑠 + 𝑑. However, those are relatively trivial solutions 
and as will be shown in the proceeding steps they are already included in our more general solution. 

Solution to the ODE obtained in (29) is found as  

𝑟 (𝑠) =
𝑚(𝑞2+𝑐1

2)(1−cosh (𝑐1(𝑠+𝑐2)))

𝑐1
2                                (30) 

 which leads to τ(𝑠) by using equation (27) and setting b=𝑐3  

𝜏 (𝑠) = −4𝑚 arctan (
𝑞tanh (

𝑐1
2
(𝑠+𝑐2))

𝑐1
) −

𝑚𝑞(𝑞2+𝑐1
2)sinh (𝑐1(𝑠+𝑐2))

𝑐1
3 +𝑚𝑞(3 +

𝑞2

𝑐1
2)(𝑠 + 𝑐2) + 𝑐3        (31) 

We apply a variable change  θ(s) →  arccos(X(s)) in order to solve equations (20) and (21) which transform to 

    −
�̇� (𝑞+2𝑋 �̇�)+(𝑋2−1)�̈�

√1−𝑋2
= 0                                                                (32) 

    
−�̇�(𝑋2−1)2(𝑞+𝑋 �̇�)+(𝑋2−1)�̈�−𝑋 �̇�2

(1−𝑋2)3 2⁄ = 0                                                          (33) 

 
Equation (32) can be rewritten as 

𝜕𝑠(𝑞 𝑋 + �̇�(𝑋
2  − 1)) = 0                                 (34) 

Integrating both sides yields 

𝑞 𝑋 + �̇�(𝑋2  − 1) = 𝑐 

  ⇒ 𝑞 𝑋 + 𝑐5 = �̇�(1 − 𝑋
2)  ⇒  �̇�(𝑠) =

𝑞 𝑋(𝑠)+𝑐5

1−𝑋(𝑠)2
                         (35) 

Integrating (35) again gives 

  𝜙 (𝑠) = 𝑐4 + ∫
𝑞𝑋(𝑠)+𝑐5

1−𝑋(𝑠)2
𝑑𝑠                                                                     (36) 

Inserting (36) in (33) yields 

𝑋 (𝑞2+𝑋(𝑞𝑐5−�̈�)+�̇�
2+𝑐5

2)+𝑞 𝑐5+�̈�

(1−𝑋2)3 2⁄ = 0                                                     (37)                

 
Solution to (37) is obtained as 

𝑋(𝑠) =
ⅇ−𝑐6(𝑠+𝑐7)(𝑐5

2+𝑐6
2)(𝑞2+𝑐6

2)+ⅇ𝑐6(𝑠+𝑐7)+2𝑞𝑐5

2𝑐6
2                                            (38)                

Inserting 𝑋(𝑠) and taking the integral in (36) gives  

𝜙(𝑠) = arctan (
𝑐6(𝑞+𝑐5)

𝑞𝑐5+ⅇ
𝑐6(𝑠+𝑐7)−𝑐6

2) + arctan (
𝑐6(𝑞−𝑐5)

𝑞𝑐5+ⅇ
𝑐6(𝑠+𝑐7)+𝑐6

2) + 𝑐4                                   (39) 
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Remember that θ was transformed to the variable 𝑋 by θ(s) → arccos(X(s)). Hence,  

θ(𝑠) = arccos (
ⅇ−𝑐6(𝑠+𝑐7)(𝑐5

2+𝑐6
2)(𝑞2+𝑐6

2)+ⅇ𝑐6(𝑠+𝑐7)+2𝑞𝑐5

2𝑐6
2 )                                                    (40) 

This concludes the solution of Lorentz equation for the magnetic curve γ(s). Note that we fixed only one initial 
condition in equation (27) and obtained a general solution for the Lorentz equation with seven arbitrary constants out 
of eight. However, one should be careful when choosing the constants in equation (40) since the domain of  inverse 
cosine function is [-1, 1]. 

We give a plot of γ(s) for q=m=1 and all other constants were chosen by respecting the domains of the given 
functions, particularly fixing θ = 0. 

 

Figure 1. Magnetic curve γ(s) for q=m=1, θ = 0 and 
s ∈ [−3,3].. 

 
It is known that if magnetic field B on M has a global vector potential 𝛢, i.e. B=d𝛢, then the energy functional of a 
smooth curve γ : [a, b] → M  can be defined by [12] 

   𝐸𝛢(𝛾) = ∫  [
1

2
 ‖γ̇‖2 + 𝛢(γ̇)] 𝑑𝑠

𝑏

𝑎

                                                                       (41) 

We have given Kähler magnetic field B on ES space in equation (11) as a 2-form which can be written as d𝛢 

    ω̂ =
1

𝑟2
dτ ∧ dr + sinθ dϕ ∧ dθ 

         = 𝑑 (
dτ

𝑟
+ cosθ dϕ)   ⇒  𝐴 =

dτ

𝑟
+ cosθ dϕ                                                      (42) 

Since there exists a global vector potential 𝛢 for the magnetic field we can calculate the energy for an interval of 
magnetic field curve γ(s). We first compute the integrand of the integral given in equation (41) by using the metric �̂� 
and γ̇(𝑠) given in equation (15) as follows 

 ‖γ̇‖2 =
�̇�(𝑠)2

𝑟(𝑠)(𝑟(𝑠) − 2𝑚)
+
(𝑟(𝑠) − 2𝑚)τ̇(𝑠)2

𝑟(𝑠)3
+ θ̇(𝑠)2 + sin2(𝜃(𝑠))ϕ̇(𝑠)2 

𝛢(γ̇) =
τ̇(𝑠)

𝑟(𝑠)
+ cos(𝜃(𝑠))ϕ̇(𝑠)                                                                                         (43) 

which yield the following after inserting the parameterized coordinates τ(𝑠), 𝑟(𝑠), ϕ(𝑠), θ(𝑠) given in equations (30), 
(31), (39) and (40) 

‖γ̇‖2 = 𝑐1
2 − 𝑐6

2                                                                                                             (44) 

𝛢(γ̇) = 𝑐6
2𝑒𝑐6(𝑠+𝑐7) (

𝑞−𝑐5

(𝑐5
2+𝑐6

2)(𝑞2+𝑐6
2)+2(𝑐5𝑞+𝑐6

2)ⅇ𝑐6(𝑠+𝑐7)+ⅇ2𝑐6(𝑠+𝑐7)
−

                                         
𝑞+𝑐5

(𝑐5
2+𝑐6

2)(𝑞2+𝑐6
2)−2(𝑐6

2−𝑐5𝑞)ⅇ
𝑐6(𝑠+𝑐7)+ⅇ2𝑐6(𝑠+𝑐7)

) −
2𝑐1

2𝑞

(𝑞2+𝑐1
2)cosh (𝑐1(𝑠+𝑐2))−𝑞

2+𝑐1
2  

Finally, we take the integral given in (41) and obtain the energy of  the magnetic curve associated with the potential 𝛢 
for an interval of s ∈ [a,b]  as  
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𝐸𝛢(𝛾) =  
1

2
(𝑐1

2 − 𝑐6
2)(𝑏 − 𝑎) − arctan (

𝑐6(𝑞+𝑐5)

ⅇ𝑐6(𝑎+𝑐7)+𝑐5𝑞−𝑐6
2) + arctan (

𝑐6(𝑞−𝑐5)

ⅇ𝑐6(𝑎+𝑐7)+𝑐5𝑞+𝑐6
2) +

                 2arctan (
𝑞tanh (

1

2
𝑐1(𝑎+𝑐2))

𝑐1
) + arctan (

𝑐6(𝑞+𝑐5)

ⅇ𝑐6(𝑏+𝑐7)+𝑐5𝑞−𝑐6
2) − arctan (

𝑐6(𝑞−𝑐5)

ⅇ𝑐6(𝑏+𝑐7)+𝑐5𝑞+𝑐6
2) −

                 2arctan (
𝑞tanh (

1

2
𝑐1(𝑏+𝑐2))

𝑐1
)            (45) 

It is clear that the energy computed in (45) will always be finite for a finite interval [a,b] since the range of arctan function 
is (-π/2, π/2). Hence, it is possible to conclude that the proposed magnetic field and the associated magnetic curve 
solution is physically meaningful. 

Conclusions and Outlook 

In this study, we showed that Euclidean Schwarzschild 
space is locally conformally Kähler and transformed it into 
a Kähler space by applying a conformal factor. Then we 
solved Lorentz equation to find analytical expressions for 
magnetic curve which is compatible with the almost 
complex structure of the newly found Kähler space. 
Finally, we found a global vector potential 𝛢 whose 
exterior derivative gives the magnetic field and calculated 
the energy of the magnetic curves for this vector 
potential. We think that the following research problems 
might be interesting for future study. 

 What are the J-trajectories of Euclidean Schwarzschild 
space? 

 J-trajectories of ℝ×S3 was already studied in literature. 
ℝ×S3 is also known to be a locally conformally Kähler 
space. So, can we apply the same procedure that we 
did in this study and find the Kähler magnetic curves 
for the Kähler counterpart of ℝ×S3? 

 More generally, let (M, g, J) be a locally conformally 
Kähler space and (M′, g′, J′)  be its corresponding 
Kähler space. Can we find a general relationship 
between J-trajectory γ on M and Kähler magnetic 
curve γ′ on M′? 

 Among the magnetic curves found in literature, which 
ones can be considered physical, and how can we 
classify them?  
Although there are some studies on Kähler magnetic 

curves, there are few in the literature that address the 
explicit construction of these curves, particularly in 
relation to physics. We expect that this study, along with 
the proposed problems outlined above, will offer insights 
for future studies on four-dimensional Kähler magnetic 
curves. 
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