Design and Fabrication of Single Transverse Mode Passive Large-Pitch Fibers
Year 2025,
Volume: 46 Issue: 1, 172 - 178, 25.03.2025
Bülend Ortaç
Abstract
The fabrication processes of single transverse mode passive large-pitch optical fiber (LPF) have been proposed and investigated. The LPF design, combined with the fundamental mode operating principle of delocalizing higher-order modes, has led to impressive performance. In this study, two LPF preform designs were proposed based on the stacking of one type of inner glass tube, two (design of LPF1) or three (design of LPF2) different filler rods, and a core rod placed within an outer tube. The first passive LPF1 is fabricated from a single-step preform drawing process. This fiber exhibits single transverse mode propagation, featuring a core size of 45.5 µm and a normalized hole diameter of 0.454. For the first time, a single transverse mode of light propagation from an LPF with an elliptical-like hole shape was achieved. The second LPF2 design has been proposed and fabricated by using a two-step preform drawing process. Successful production of an LPF with a circular hole shape has been obtained and exhibits single transverse mode propagation, featuring a core size of 42.8 µm and a normalized hole diameter of 0.322. Furthermore, numerical analysis was also performed to study mode propagation for the LPF.
Supporting Institution
The National Nanotechnology Research Center (UNAM) at Bilkent University
Thanks
Dr. Bülend Ortaç gratefully acknowledges support from TÜBİTAK, the Turkish Academy of Sciences Outstanding Young Scientists (TÜBA-GEBİP), the Young Scientist Awards Program (BAGEP) from the Science Academy, as well as the METU Prof. Dr. Mustafa Parlar Foundation Research Incentive and Feyzi Akkaya Foundation (FABED) Eser Tümen Young Scientist Awards programs. Appreciation is also extended to Dr. Ali Karatutlu, Dr. Esra Kendir Tekgül, Elif Yapar Yıldırım, Ekin Teslime Balk, Ahmet Başaran, and Ahmet Kağan Kolsuz for their fruitful discussions and infrastructural support. Additionally, the author recognizes Seyitali Yaşar and Levent Ersoy at Bilkent University-UNAM for their technical assistance during the drawing process.
References
- [1] Jauregui, C., Limpert, J., Tünnermann, A., High-power fibre lasers, Nature Photonics. 7 (2013) 861-867.
- [2] Zervas, M., Codemard, C., High Power Fiber Lasers: A Review, IEEE J. SEL. TOP. QUANT. 20 (2014) 1-23.
- [3] Zuo, J., Lin, X., High‐Power Laser Systems, Laser Photonics Rev. 16 (5) (2022) 826-831.
- [4] Chen, X., Yao, T., Huang, L., An, Y., Hanshuo, W., Pan, Z., Zhou, P., Functional Fibers and Functional Fiber-Based Components for High-Power Lasers, Advanced Fiber Materials, 5 (2023) 59-106.
- [5] Taverner, D., Richardson, D. J., Dong, L., Caplen, J., 158 µJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier, Optics Letters, 22 (6) (1997) 378-380.
- [6] Broderick, N., Offerhaus, H., Richardson, D. J., Sammut, R. A., Caplen, J., Dong, L., Large Mode Area Fibers for High Power Application, Optical Fiber Technology, 5 (1999) 185-196.
- [7] Jauregui, C., Stihler, C., Limpert, J., Transverse mode instability, Advances in Optics and Photonics, 12 (2020) 429-484.
- [8] Xiuquan, M., Cheng Z., I-Ning H., Alex K., Almantas G., Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores, Optics Express, 22 (2014) 9206-9219.
- [9] Marko L., Mette M. J., Kristian R. H., Thomas T. A., Jes B., Jesper L., Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability, Optics Express, 20 (2012) 5742-5753.
- [10] Liang D., Hugh A. M., Libin F., Michiharu O., Andrius M., Shigeru S., Martin E. F., Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding, Optics Express, 17 (2009) 8962-8969.
- [11] Wang, X., Lou, S., Lu, W., Sheng, X., Zhao, T., Hua, P., Bend resistant large mode area fiber with multi-trench in the core, IEEE J. SEL. TOP. QUANT. 22 (2016).
- [12] Gu, G., Kong, F., Hawkins, T. W., Jones, M., Dong, L., Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding, Optics Express, 23 (2015) 9147-9156.
- [13] Yehouessi, J. P., Vanvincq, O., Cassez, A., Douay, M., Quiquempois, Y., Bouwmans, G., Bigot, L., Extreme large mode area in single-mode pixelated Bragg fiber, Optics Express, 24 (2016) 4761-4770.
- [14] Limpert, J., Stutzki, F., Jansen, F., Otto, H.-J. Eidam, T. Jauregui, C., Tünnermann, A., Yb-doped large-pitch fibres: Effective single-mode operation based on higher-order mode delocalisation, Light: Science & Applications, 1 (2012) e8.
- [15] Stutzki, F., Jansen, F., Otto H.-J., Jauregui, C., Limpert, J., Tünnermann, A., Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems, Optica, 1 (2014) 233-242.
- [16] Steinkopff, A., Jauregui, C., Stutzki, F., Nold, J., Hupel, C., Haarlammert, N., Bierlich, J., Tünnermann, A., Limpert, J., Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter, Optics Letters, 44 (2019) 650-653.
- [17] Stutzki, F., Jansen, F., Eidam, T., Steinmetz, A., Jauregui, C., Limpert, J., Tünnermann, A., High average power large-pitch fiber amplifier with robust single-mode operation, Optics Letters, 36 (2011) 689-691.
- [18] Martin, B., Florian, J., Fabian S., Cesar J., Ortaç, B., Limpert, J., Tünnermann, A., High average and peak power femtosecond large-pitch photonic-crystal-fiber laser," Optics Letters, 36 (2011) 244-246.
- [19] Stark, H., Buldt, J., Mueller, M., Klenke, A., Tünnermann, A., Limpert, J., 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification, Optics Letters, 44 (2019) 5529-5532.
- [20] Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D., Hansen, K.P., Modal cutoff and the V parameter in photonic crystal fibers, Optics Letters, 28 (2003), 1879-1881.
- [21] Suslov, D., Komanec, M., Nemecek, T., Bohata, J., Zvanovec, S., Exact modeling of photonic crystal fibers for determination of fundamental properties, Optical Fiber Technology, 56. (2020) 102177.
- [22] Träger, F., Handbook of Lasers and Optics. Springer, (2012).
- [23] Pandey, S., Prajapati, Y., Maurya, J., Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss, Results in Optics, 1 (2020).
Tek Enine Modlu Geniş Aralıklı Pasif Fiberlerin Tasarımı ve Üretimi
Year 2025,
Volume: 46 Issue: 1, 172 - 178, 25.03.2025
Bülend Ortaç
Abstract
We propose and investigate the fabrication processes of single transverse mode passive large-pitch optical fiber (LPF). The LPF design, combined with the fundamental mode operating principle of delocalizing higher-order modes, has led to impressive performance. In this study, two LPF preform designs were proposed based on the stacking of one type of inner glass tube, two (design of LPF1) or three (design of LPF2) different filler rods, and a core rod placed within an outer tube. The first passive LPF1 is fabricated from a single-step preform drawing process. This fiber exhibits single transverse mode propagation, featuring a core size of 45.5 µm and a normalized hole diameter of 0.454. We also demonstrated, for the first time, a single transverse mode of light propagation from an LPF with an elliptical-like hole shape. The second LPF2 design has been proposed and fabricated by using a two-step preform drawing process. Successful production of an LPF with a circular hole shape has been obtained and exhibits single transverse mode propagation, featuring a core size of 42.8 µm and a normalized hole diameter of 0.322. Furthermore, numerical analysis was also performed to study mode propagation for the LPF.
References
- [1] Jauregui, C., Limpert, J., Tünnermann, A., High-power fibre lasers, Nature Photonics. 7 (2013) 861-867.
- [2] Zervas, M., Codemard, C., High Power Fiber Lasers: A Review, IEEE J. SEL. TOP. QUANT. 20 (2014) 1-23.
- [3] Zuo, J., Lin, X., High‐Power Laser Systems, Laser Photonics Rev. 16 (5) (2022) 826-831.
- [4] Chen, X., Yao, T., Huang, L., An, Y., Hanshuo, W., Pan, Z., Zhou, P., Functional Fibers and Functional Fiber-Based Components for High-Power Lasers, Advanced Fiber Materials, 5 (2023) 59-106.
- [5] Taverner, D., Richardson, D. J., Dong, L., Caplen, J., 158 µJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier, Optics Letters, 22 (6) (1997) 378-380.
- [6] Broderick, N., Offerhaus, H., Richardson, D. J., Sammut, R. A., Caplen, J., Dong, L., Large Mode Area Fibers for High Power Application, Optical Fiber Technology, 5 (1999) 185-196.
- [7] Jauregui, C., Stihler, C., Limpert, J., Transverse mode instability, Advances in Optics and Photonics, 12 (2020) 429-484.
- [8] Xiuquan, M., Cheng Z., I-Ning H., Alex K., Almantas G., Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores, Optics Express, 22 (2014) 9206-9219.
- [9] Marko L., Mette M. J., Kristian R. H., Thomas T. A., Jes B., Jesper L., Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability, Optics Express, 20 (2012) 5742-5753.
- [10] Liang D., Hugh A. M., Libin F., Michiharu O., Andrius M., Shigeru S., Martin E. F., Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding, Optics Express, 17 (2009) 8962-8969.
- [11] Wang, X., Lou, S., Lu, W., Sheng, X., Zhao, T., Hua, P., Bend resistant large mode area fiber with multi-trench in the core, IEEE J. SEL. TOP. QUANT. 22 (2016).
- [12] Gu, G., Kong, F., Hawkins, T. W., Jones, M., Dong, L., Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding, Optics Express, 23 (2015) 9147-9156.
- [13] Yehouessi, J. P., Vanvincq, O., Cassez, A., Douay, M., Quiquempois, Y., Bouwmans, G., Bigot, L., Extreme large mode area in single-mode pixelated Bragg fiber, Optics Express, 24 (2016) 4761-4770.
- [14] Limpert, J., Stutzki, F., Jansen, F., Otto, H.-J. Eidam, T. Jauregui, C., Tünnermann, A., Yb-doped large-pitch fibres: Effective single-mode operation based on higher-order mode delocalisation, Light: Science & Applications, 1 (2012) e8.
- [15] Stutzki, F., Jansen, F., Otto H.-J., Jauregui, C., Limpert, J., Tünnermann, A., Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems, Optica, 1 (2014) 233-242.
- [16] Steinkopff, A., Jauregui, C., Stutzki, F., Nold, J., Hupel, C., Haarlammert, N., Bierlich, J., Tünnermann, A., Limpert, J., Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter, Optics Letters, 44 (2019) 650-653.
- [17] Stutzki, F., Jansen, F., Eidam, T., Steinmetz, A., Jauregui, C., Limpert, J., Tünnermann, A., High average power large-pitch fiber amplifier with robust single-mode operation, Optics Letters, 36 (2011) 689-691.
- [18] Martin, B., Florian, J., Fabian S., Cesar J., Ortaç, B., Limpert, J., Tünnermann, A., High average and peak power femtosecond large-pitch photonic-crystal-fiber laser," Optics Letters, 36 (2011) 244-246.
- [19] Stark, H., Buldt, J., Mueller, M., Klenke, A., Tünnermann, A., Limpert, J., 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification, Optics Letters, 44 (2019) 5529-5532.
- [20] Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D., Hansen, K.P., Modal cutoff and the V parameter in photonic crystal fibers, Optics Letters, 28 (2003), 1879-1881.
- [21] Suslov, D., Komanec, M., Nemecek, T., Bohata, J., Zvanovec, S., Exact modeling of photonic crystal fibers for determination of fundamental properties, Optical Fiber Technology, 56. (2020) 102177.
- [22] Träger, F., Handbook of Lasers and Optics. Springer, (2012).
- [23] Pandey, S., Prajapati, Y., Maurya, J., Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss, Results in Optics, 1 (2020).