Research Article
BibTex RIS Cite

Electronic, Optical and Mechanical Properties of Ta Doped LiNbO3: Ab Initio Calculation

Year 2025, Volume: 46 Issue: 1, 152 - 161, 25.03.2025
https://doi.org/10.17776/csj.1589607

Abstract

In this study, the electronic, optical and mechanical properties of LiNb1-xTaxO3 were investigated by ab initio method by adding tantalum (Ta) instead of niobium (Nb) with 0.1 doping step from x=0 to x=1 at different concentrations. The effects of Ta addition on the electronic structure of LiNbO3 were investigated. The results indicate that Ta doping results in an increase in the forbidden band gap of LiNbO3. The real and imaginary parts of the dielectric function of LiNb1-xTaxO3 were calculated and the optical transitions between the bands were determined. The second-order elastic constants of Ta doped LiNbO3 were calculated and the mechanical stability of the material was determined. In addition, the calculated elastic constants were used to determine the bulk modulus (B), shear modulus (G), Young's modulus (E), H_macro and H_micro hardness values. It was determined that the LiNb1-xTaxO3 material exhibited a transition from a ductile to a more brittle state with the addition of Ta.

Project Number

FM21LTP1

References

  • [1] Bridges F., Castillo-Torres J., Car B., Medling S., Kozina M., EXAFS evidence for a primary Zn Li dopant in LiNbO3, Physical Review B—Condensed Matter and Materials Physics, 85 (2012) 064107-064118.
  • [2] He Y.L., Xue D.F., Bond-energy study of photorefractive properties of doped lithium niobate crystals, J Phys Chem C, 111 (2007) 13238-13243.
  • [3] Tsuboi T., Grinberg M., Kaczmarek S.M., Site symmetries of Cu2+ ions in LiNbO3 crystals, J Alloy Compd, 341 (2002) 333-337.
  • [4] Wang W., Wang R., Zhang W., Xing L.L., Xu Y.L., Wu X.H., A computer study and photoelectric property analysis of potassium-doped lithium niobate single crystals, Phys Chem Chem Phys, 15 (2013) 14347-14356.
  • [5] Cabuk S., First-Principles Study of The Electronic, Linear, and Nonlinear Optical Properties of Li(Nb, Ta)O3, Int J Mod Phys B, 24 (2010) 6277-6290.
  • [6] Ok K.M., Chi E.O., Halasyamani P.S., Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem Soc Rev, 35 (2006) 710-717.
  • [7] Xu Y.H., Hao X.F., Franchini C., Gao F.M., Structural, Electronic, and Ferroelectric Properties of Compressed CdPbO3 Polymorphs, Inorg Chem, 52 (2013) 1032-1039.
  • [8] Yu C.J., Emmerich H., An efficient virtual crystal approximation that can be used to treat heterovalent atoms, applied to (1−x)BiScO3–xPbTiO3, J Phys-Condens Mat, 19 (2007).
  • [9] Perdew J.P., Burke K., Ernzerhof M., Generalized gradient approximation made simple, Phys Rev Lett, 77 (1996) 3865-3868.
  • [10] Hamann D.R., Optimized norm-conserving Vanderbilt pseudopotentials, Phys Rev B, 88 (2013).
  • [11] Monkhorst H.J., Pack J.D., Special points for Brillouin-zone integrations, Phys Rev B, 13 (1976) 5188.
  • [12] Gonze X., Amadon B., Antonius G., Arnardi F., Baguet L., Beuken J.M., Bieder J., Bottin F., Bouchet J., Bousquet E., Brouwer N., Bruneval F., Brunin G., Cavignac T., Charraud J.B., Chen W., Côté M., Cottenier S., Denier J., Geneste G., Ghosez P., Giantomassi M., Gillet Y., Gingras O., Hamann D.R., Hautier G., He X., Helbig N., Holzwarth N., Jia Y.C., Jollet F., Lafargue-Dit-Hauret W., Lejaeghere K., Marques M.A.L., Martin A., Martins C., Miranda H.P.C., Naccarato F., Persson K., Petretto G., Planes V., Pouillon Y., Prokhorenko S., Ricci F., Rignanese G.M., Romero A.H., Schmitt M.M., Torrent M., van Setten M.J., Van Troeye B., Verstraete M.J., Zerah G., Zwanziger J.W., The ABINIT project: Impact, environment and recent developments, Comput Phys Commun, 248 (2020) 107042.
  • [13] Megaw H.D., A note on the structure of lithium niobate, LiNbO3, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 24 (1968) 583-588.
  • [14] Bermúdez V., Aragó C., Fernández-Ruiz R., Diéguez E., Evolution of the Structural Properties in Ferroelectric LiNb1−xTaxO3 Compound with Variation in Ta Composition, Ferroelectrics, 304 (2004) 989-992.
  • [15] Schmidt W.G., Albrecht M., Wippermann S., Blankenburg S., Rauls E., Fuchs F., Rödl C., Furthmüller J., Hermann A., LiNbO3 ground- and excited-state properties from first-principles calculations, Phys Rev B, 77 (2008).
  • [16] Aliabad H.A.R., Ahmad I., Optoelectronic properties of LixAxNbO3 (A: Na, K, Rb, Cs, Fr) crystals, Physica B, 407 (2012) 368-377.
  • [17] Hossain M.M., First principles study on the structural, elastic, electronic and optical properties of LiNbO3, Heliyon, 5 (2019). [18] Dhar A., Mansingh A., Optical properties of reduced lithium niobate single crystals, J Appl Phys, 68 (1990) 5804-5809.
  • [19] Javid M.A., Khan Z.U., Mehmood Z., Nabi A., Hussain F., Imran M., Nadeem M., Anjum N., Structural, electronic and optical properties of LiNbO3 using GGA-PBE and TB-mBJ functionals: A DFT study, Int J Mod Phys B, 32 (2018).
  • [20]Xu Y.-N., Gu Z.-Q., Ching W., Calculation of self-energy corrected band structure of rhombohedral LiNbO3, Ferroelectrics, 164 (1995) 225-230.
  • [21] Thierfelder C., Sanna S., Schindlmayr A., Schmidt W.G., Do we know the band gap of lithium niobate?, Phys Status Solidi C, 7 (2010) 362-365.
  • [22] Nahm H.H., Park C.H., First-principles study of microscopic properties of the Nb antisite in LiNbO3: Comparison to phenomenological polaron theory, Phys Rev B, 78 (2008).
  • [23]Kato H., Kudo A., Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K), The Journal of Physical Chemistry B, 105 (2001) 4285-4292.
  • [24]Wang H., Wu F., Jiang H., Electronic band structures of ATaO3 (A= Li, Na, and K) from first-principles many-body perturbation theory, The Journal of Physical Chemistry C, 115 (2011) 16180-16186.
  • [25]Mamoun S., Merad A.E., Guilbert L., Energy band gap and optical properties of lithium niobate from ab initio calculations, Comp Mater Sci, 79 (2013) 125-131.
  • [26]Mamedov A.M., Osman M.A., Hajieva L.C., VUV Reflectivity of LiNbO3 and LiTaO3 Single Crystals, Appl. Phys. A, 34 (1984) 189-192.
  • [27] Wang J.J., Meng F.Y., Ma X.Q., Xu M.X., Chen L.Q., Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles, J Appl Phys, 108 (2010).
  • [28]Kovacs G., Anhorn M., Engan H.E., Visintini G., Ruppel C.C.W., Improved Material Constants for LiNbO3 and LiTaO3, IEEE Ultrasonics Symposium, 438 (1990) 1-4.
  • [29]Kushibiki J.I., Takanaga I., Arakawa M., Sannomiya T., Accurate Measurements of the Acoustical Physical Constants of LiNbO3 and LiTaO3 Single Crystals, IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 1999, 1315-1323
  • [30]Takanaga I., Kushibiki J.I., A Method of Determining Acoustical Physical Constants for Piezoelectric Materials by Line-Focus-Beam Acoustic Microscopy, IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 2002, 893-904
  • [31] Philip T., Menon C.S., Induleka K., Higher Order Elastic Constants, Gruneisen Parameters and Lattice Thermal Expansion of Lithium Niobate, E-Journal of Chemistry, 3 (2006) 122-133.
  • [32]Andrushchak A.S., Mytsyk B.G., Laba H.P., Yurkevych O.V., Solskii I.M., Kityk A.V., Sahraoui B., Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature, J Appl Phys, 106 (2009).
  • [33]Tripathy S.K., Sahu G., Ground state properties of LiNbO3 from first-principles calculations, Advanced Materials and Radiation Physics (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics, Longowal, India, 2015, 020005
  • [34]Voigt W., Lehrbuch der Kristallphysik Teubner Verlag, Leipzig1910.
  • [35]Reuss A., Berechung der Fliessgrenze von Mischkristallen, Z. Angew. Math. Mech, 9 (1929).
  • [36]Hill R., The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A, 65 (1952) 349.
  • [37] Haines J., Léger J.M., Bocquillon G., Synthesis and design of superhard materials, Ann Rev Mater Res, 31 (2001) 1-23.
  • [38]Pugh S., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45 (1954) 823-843.
  • [39]Ali M.A., Hossain M.M., Islam A.K.M.A., Naqib S.H., Ternary boride Hf3PB4: Insights into the physical properties of the hardest possible boride MAX phase, J Alloy Compd, 857 (2021) 158264.
  • [40]Liu W.N., Niu Y.T., Li W.Q., Theoretical prediction of the physical characteristic of Na3MO4 (M = Np and Pu): The first-principles calculations, Ceram Int, 46 (2020) 25359-25365.

Ta Katkılı LiNbO3' ün Elektronik, Optik ve Mekanik Özellikleri: Ab İnitio Hesabı

Year 2025, Volume: 46 Issue: 1, 152 - 161, 25.03.2025
https://doi.org/10.17776/csj.1589607

Abstract

Bu çalışmada, LiNb1-xTaxO3 'ün elektronik, optik ve mekanik özellikleri, niyobyum (Nb) yerine tantal (Ta) eklenerek x=0'dan x=1'e kadar 0.1 katkılama adımı ile farklı konsantrasyonlarda ab initio yöntemi ile incelenmiştir. Ta katkısının LiNbO3 'ün elektronik yapısı üzerindeki etkileri incelenmiştir. Sonuçlar, Ta katkısının LiNbO3 'ün yasak bant aralığında bir artışa neden olduğunu göstermektedir. LiNb1-xTaxO3 'ün dielektrik fonksiyonunun reel ve sanal kısımları hesaplanmış ve bantlar arasındaki optik geçişler belirlenmiştir. Ta katkılı LiNbO3 'ün ikinci dereceden elastik sabitleri hesaplandı ve malzemenin mekanik kararlılığı belirlendi. Ayrıca hesaplanan elastik sabitler bulk modülü (B), kayma modülü (G), Young modülü (E) ve sertlik değerlerinin belirlenmesinde kullanıldı. LiNb1-xTaxO3 malzemesinin Ta ilavesiyle sünek durumdan daha kırılgan bir duruma geçiş sergilediği belirlenmiştir.

Project Number

FM21LTP1

References

  • [1] Bridges F., Castillo-Torres J., Car B., Medling S., Kozina M., EXAFS evidence for a primary Zn Li dopant in LiNbO3, Physical Review B—Condensed Matter and Materials Physics, 85 (2012) 064107-064118.
  • [2] He Y.L., Xue D.F., Bond-energy study of photorefractive properties of doped lithium niobate crystals, J Phys Chem C, 111 (2007) 13238-13243.
  • [3] Tsuboi T., Grinberg M., Kaczmarek S.M., Site symmetries of Cu2+ ions in LiNbO3 crystals, J Alloy Compd, 341 (2002) 333-337.
  • [4] Wang W., Wang R., Zhang W., Xing L.L., Xu Y.L., Wu X.H., A computer study and photoelectric property analysis of potassium-doped lithium niobate single crystals, Phys Chem Chem Phys, 15 (2013) 14347-14356.
  • [5] Cabuk S., First-Principles Study of The Electronic, Linear, and Nonlinear Optical Properties of Li(Nb, Ta)O3, Int J Mod Phys B, 24 (2010) 6277-6290.
  • [6] Ok K.M., Chi E.O., Halasyamani P.S., Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem Soc Rev, 35 (2006) 710-717.
  • [7] Xu Y.H., Hao X.F., Franchini C., Gao F.M., Structural, Electronic, and Ferroelectric Properties of Compressed CdPbO3 Polymorphs, Inorg Chem, 52 (2013) 1032-1039.
  • [8] Yu C.J., Emmerich H., An efficient virtual crystal approximation that can be used to treat heterovalent atoms, applied to (1−x)BiScO3–xPbTiO3, J Phys-Condens Mat, 19 (2007).
  • [9] Perdew J.P., Burke K., Ernzerhof M., Generalized gradient approximation made simple, Phys Rev Lett, 77 (1996) 3865-3868.
  • [10] Hamann D.R., Optimized norm-conserving Vanderbilt pseudopotentials, Phys Rev B, 88 (2013).
  • [11] Monkhorst H.J., Pack J.D., Special points for Brillouin-zone integrations, Phys Rev B, 13 (1976) 5188.
  • [12] Gonze X., Amadon B., Antonius G., Arnardi F., Baguet L., Beuken J.M., Bieder J., Bottin F., Bouchet J., Bousquet E., Brouwer N., Bruneval F., Brunin G., Cavignac T., Charraud J.B., Chen W., Côté M., Cottenier S., Denier J., Geneste G., Ghosez P., Giantomassi M., Gillet Y., Gingras O., Hamann D.R., Hautier G., He X., Helbig N., Holzwarth N., Jia Y.C., Jollet F., Lafargue-Dit-Hauret W., Lejaeghere K., Marques M.A.L., Martin A., Martins C., Miranda H.P.C., Naccarato F., Persson K., Petretto G., Planes V., Pouillon Y., Prokhorenko S., Ricci F., Rignanese G.M., Romero A.H., Schmitt M.M., Torrent M., van Setten M.J., Van Troeye B., Verstraete M.J., Zerah G., Zwanziger J.W., The ABINIT project: Impact, environment and recent developments, Comput Phys Commun, 248 (2020) 107042.
  • [13] Megaw H.D., A note on the structure of lithium niobate, LiNbO3, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 24 (1968) 583-588.
  • [14] Bermúdez V., Aragó C., Fernández-Ruiz R., Diéguez E., Evolution of the Structural Properties in Ferroelectric LiNb1−xTaxO3 Compound with Variation in Ta Composition, Ferroelectrics, 304 (2004) 989-992.
  • [15] Schmidt W.G., Albrecht M., Wippermann S., Blankenburg S., Rauls E., Fuchs F., Rödl C., Furthmüller J., Hermann A., LiNbO3 ground- and excited-state properties from first-principles calculations, Phys Rev B, 77 (2008).
  • [16] Aliabad H.A.R., Ahmad I., Optoelectronic properties of LixAxNbO3 (A: Na, K, Rb, Cs, Fr) crystals, Physica B, 407 (2012) 368-377.
  • [17] Hossain M.M., First principles study on the structural, elastic, electronic and optical properties of LiNbO3, Heliyon, 5 (2019). [18] Dhar A., Mansingh A., Optical properties of reduced lithium niobate single crystals, J Appl Phys, 68 (1990) 5804-5809.
  • [19] Javid M.A., Khan Z.U., Mehmood Z., Nabi A., Hussain F., Imran M., Nadeem M., Anjum N., Structural, electronic and optical properties of LiNbO3 using GGA-PBE and TB-mBJ functionals: A DFT study, Int J Mod Phys B, 32 (2018).
  • [20]Xu Y.-N., Gu Z.-Q., Ching W., Calculation of self-energy corrected band structure of rhombohedral LiNbO3, Ferroelectrics, 164 (1995) 225-230.
  • [21] Thierfelder C., Sanna S., Schindlmayr A., Schmidt W.G., Do we know the band gap of lithium niobate?, Phys Status Solidi C, 7 (2010) 362-365.
  • [22] Nahm H.H., Park C.H., First-principles study of microscopic properties of the Nb antisite in LiNbO3: Comparison to phenomenological polaron theory, Phys Rev B, 78 (2008).
  • [23]Kato H., Kudo A., Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K), The Journal of Physical Chemistry B, 105 (2001) 4285-4292.
  • [24]Wang H., Wu F., Jiang H., Electronic band structures of ATaO3 (A= Li, Na, and K) from first-principles many-body perturbation theory, The Journal of Physical Chemistry C, 115 (2011) 16180-16186.
  • [25]Mamoun S., Merad A.E., Guilbert L., Energy band gap and optical properties of lithium niobate from ab initio calculations, Comp Mater Sci, 79 (2013) 125-131.
  • [26]Mamedov A.M., Osman M.A., Hajieva L.C., VUV Reflectivity of LiNbO3 and LiTaO3 Single Crystals, Appl. Phys. A, 34 (1984) 189-192.
  • [27] Wang J.J., Meng F.Y., Ma X.Q., Xu M.X., Chen L.Q., Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles, J Appl Phys, 108 (2010).
  • [28]Kovacs G., Anhorn M., Engan H.E., Visintini G., Ruppel C.C.W., Improved Material Constants for LiNbO3 and LiTaO3, IEEE Ultrasonics Symposium, 438 (1990) 1-4.
  • [29]Kushibiki J.I., Takanaga I., Arakawa M., Sannomiya T., Accurate Measurements of the Acoustical Physical Constants of LiNbO3 and LiTaO3 Single Crystals, IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 1999, 1315-1323
  • [30]Takanaga I., Kushibiki J.I., A Method of Determining Acoustical Physical Constants for Piezoelectric Materials by Line-Focus-Beam Acoustic Microscopy, IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 2002, 893-904
  • [31] Philip T., Menon C.S., Induleka K., Higher Order Elastic Constants, Gruneisen Parameters and Lattice Thermal Expansion of Lithium Niobate, E-Journal of Chemistry, 3 (2006) 122-133.
  • [32]Andrushchak A.S., Mytsyk B.G., Laba H.P., Yurkevych O.V., Solskii I.M., Kityk A.V., Sahraoui B., Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature, J Appl Phys, 106 (2009).
  • [33]Tripathy S.K., Sahu G., Ground state properties of LiNbO3 from first-principles calculations, Advanced Materials and Radiation Physics (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics, Longowal, India, 2015, 020005
  • [34]Voigt W., Lehrbuch der Kristallphysik Teubner Verlag, Leipzig1910.
  • [35]Reuss A., Berechung der Fliessgrenze von Mischkristallen, Z. Angew. Math. Mech, 9 (1929).
  • [36]Hill R., The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A, 65 (1952) 349.
  • [37] Haines J., Léger J.M., Bocquillon G., Synthesis and design of superhard materials, Ann Rev Mater Res, 31 (2001) 1-23.
  • [38]Pugh S., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45 (1954) 823-843.
  • [39]Ali M.A., Hossain M.M., Islam A.K.M.A., Naqib S.H., Ternary boride Hf3PB4: Insights into the physical properties of the hardest possible boride MAX phase, J Alloy Compd, 857 (2021) 158264.
  • [40]Liu W.N., Niu Y.T., Li W.Q., Theoretical prediction of the physical characteristic of Na3MO4 (M = Np and Pu): The first-principles calculations, Ceram Int, 46 (2020) 25359-25365.
There are 39 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Natural Sciences
Authors

Furkahan Acar 0000-0002-4750-5036

Şevket Şimşek 0000-0002-7260-6437

Project Number FM21LTP1
Publication Date March 25, 2025
Submission Date November 22, 2024
Acceptance Date January 31, 2025
Published in Issue Year 2025Volume: 46 Issue: 1

Cite

APA Acar, F., & Şimşek, Ş. (2025). Electronic, Optical and Mechanical Properties of Ta Doped LiNbO3: Ab Initio Calculation. Cumhuriyet Science Journal, 46(1), 152-161. https://doi.org/10.17776/csj.1589607