Research Article
BibTex RIS Cite

Thermophysical Properties of Directionally Solidified the Zn-Mg-Al Eutectic Alloy and the Effect of Growth Rates on Electrical Properties

Year 2025, Volume: 46 Issue: 1, 132 - 141, 25.03.2025
https://doi.org/10.17776/csj.1565431

Abstract

The study aimed to investigate the effect of growth rates (V) on the electrical properties of a Zn–3.0 Mg–2.5 Al (wt.%) eutectic alloy. The alloy was directionally solidified at four different growth rates ranging from 8.28 to 164.12 μm/s. Directional solidification experiments were conducted using a Bridgman-type solidification furnace, which was employed for controlled solidification and minimizing undesirable casting defects, following the alloy's production and casting process. The electrical resistivity (ρ) of the samples, measured using the Four-Point Probe Method (FPPM) available in the laboratory, exhibited an increasing trend ranging from 72.80 to 96.20 (nΩm) with rising growth rates. In other words, the electrical conductivity of the Zn–Mg–Al eutectic alloy varies inversely with the growth rate. Additionally, the thermophysical properties of the eutectic alloy in the casting phase were determined using differential scanning calorimetry (DSC): ΔHf (the fusion enthalpy), ΔCp (the specific heat) and TM (the melting point) (26.69 J/g, 0.043 J/gK, 618.92 K, respectively). The results obtained for the Zn–Mg–Al eutectic alloy reveal that, when compared to Zn-Al-based alloys produced under similar experimental conditions, the elements comprising the alloy and mass proportions lead to microstructural changes, which in turn affect its electrical conductivity.

Thanks

The researcher is grateful to Professor Necmettin Maraşlı and his team for their support in conducting the experimental parts of the study in the Solid-State Physics-I laboratory.

References

  • [1] Yamamoto K., Domoto K., Tobo M., Kawamizu T., Yamana T., Ota Y., Thermal Storage System to Provide Highly Efficient Electric Power Resilience in The Era of Renewable Energy, Mitsubishi Heavy Industries Tech. Rev., 57 (1) (2020) 1–11.
  • [2] Nazir H., Batool M., Bolivar Osorio F. J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Arunachala I., Kannan A. M., Recent Developments in Phase Change Materials for Energy Storage Applications: A Review, Int. J. Heat Mass Trans., 129 (2019) 491–523.
  • [3] Zhou, C., Wu S., Medium‐and High‐Temperature Latent Heat Thermal Energy Storage: Material Database, System Review, and Corrosivity Assessment. Int. J. Energy Research, 43 (2019) 621–661.
  • [4] Hirose A., Trends of Applications and Joining Technologies of Aluminum Alloys in Automobiles, Journal of JSAE, 61 (2007) 18-23.
  • [5] Sasabe S., Dissimilar Metal Joining Technology of Aluminum Alloy to Steel, Journal of JSAE, 61 (2007) 24-29.
  • [6] Porter D.A., Easterlirng K.E., Phase Transformations in Metals and Alloys, 2nd Ed., CRC Press, London, (1992).
  • [7] Caram R., Milenkovic S., Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification, J. Crys. Growth, 198–199 (1) (1999) 844-849.
  • [8] Fu H.Z., Liu L., Progress of Directional Solidification in Processing of Advanced Materials, Mat. Sci. Forum, 475–479 (2005) Zurich-Uetikon, Switzerland.
  • [9] Li Z., Li Y., Jiang S., Zhang J., Liu X., Zhang Q., Liu Q., Calculation and Experimental Verification of Zn–Al–Mg Phase Diagram. Coatings, 14 (4) (2024) 468.
  • [10] Delneuville P., Tribological Behaviour of ZnAl Alloys (ZA27) Compared with Bronze When Used as A Bearing Material with High Load and at Very Low Speed, Wear, 105 (4) (1985) 283-292.
  • [11] Auras R., Schvezov C., Wear Behavior, Microstructure, and Dimensional Stability of As-Cast Zinc-Aluminum/SIC (Metal Matrix Composites) Alloys, Metall. Mat. Trans. A, 35 (2004) 1579–1590.
  • [12] Kurz W., Fisher D.J., Fundamentals of Solidification, Chapter 5, 4th revised edition, Trans. Tech. Publications Ltd., Bäch, Switzerland, (1998).
  • [13] Zhang Y., Song C., Zhu L., Zheng H., Zhong H., Han Q., Zhai Q., Influence of Electric-Current Pulse Treatment on the Formation of Regular Eutectic Morphology in an Al-Si Eutectic Alloy, Metall. Mat. Trans. B, 42 (2011) 604–611.
  • [14] Kakitani R., de Gouveia G.L., Garcia A., Cheung N., Spinelli J.E., Thermal Analysis During Solidification of an Al–Cu Eutectic Alloy: Interrelation of Thermal Parameters, Microstructure and Hardness, J. Thermal Analy. Cal., 137 (2019) 983–996.
  • [15] Duffar T., Sylla L., Crystal Growth Processes Based on Capillarity. Chapter 6—Vertical Bridgman Technique and Dewetting, Wiley, New York, (2010) 355–411.
  • [16] Venkataraman R., Handbook of Radioactivity Analysis (4th edition). Chapter 4—Semiconductor detectors, Elsevier Inc., (2020) 458-459.
  • [17] Rios C.T., Oliveira M.F., Caram R., Botta F.W.J., Bolfarini C., Kiminami C.S., Directional and Rapid Solidification of Al–Nb–Ni Ternary Eutectic Alloy, Mat. Sci. Eng. A, 375–377 (2004) 565-570.
  • [18] Çadırlı E., Kaya H., Gündüz M., Directional Solidification and Characterization of the Cd–Sn Eutectic Alloy, J. Alloys Comp., 431 (1-2) (2007) 171-179.
  • [19] Li X., Ren Z., Fautrelle Y., Zhang Y., Esling C., Morphological Instabilities and Alignment of Lamellar Eutectics During Directional Solidification Under a Strong Magnetic Field, Acta Mat., 58 (4) (2010) 1403-1417.
  • [20]Cui C., Zhang J., Xue T., Liu L., Fu H., Effect of Solidification Rate on Microstructure and Solid/Liquid Interface Morphology of Ni–11.5 wt% Si Eutectic Alloy, J. Mat. Sci. Tech., 31 (3) (2015) 280-284.
  • [21] Karamazı Y., Bayram Ü., Ata P., Aksöz S., Keşlioğlu K., Maraşlı N., Dependence of microstructural, mechanical and electrical properties on growth rates in directional solidified Zn-Al-Bi eutectic alloy, Trans. Nonfer. Metals Soc. China, 26 (9) (2016) 2320-2335.
  • [22] Zuo X., Zhao C., Zhang L., Wang E., Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy, Materials, 9 (7) (2016) 569.
  • [23]Bayram Ü., Karamazı Y., Ata P., Aksöz S., Keşlioğlu K., Maraşlı N., Dependence Of Microstructure, Microhardness, Tensile Strength and Electrical Resistivity on Growth Rates for Directionally Solidified Zn-Al- Sb Eutectic Alloy, Int. J. Mat. Res., 107 (11) (2016) 1005-1015.
  • [24]Hötzer J., Steinmetz P., Dennstedt A., Genau A., Kellner M., Sargin I., Nestler B., Influence of Growth Velocity Variations on the Pattern Formation During the Directional Solidification of Ternary Eutectic Al-Ag-Cu, Acta Mat., 136 (2017) 335-346.
  • [25]Maraşlı N., Bayram, Ü., Aksöz, S., The variations of electrical resistivity and thermal conductivity with growth rate for the Zn–Al–Cu eutectic alloy. J. Mater. Sci.: Mater. Electron, 32 (2021) 18212–18223.
  • [26]Yan J., Liu T., Wang M., Sun J., Dong S., Zhao L., Wang Q., Constitutional Supercooling and Corresponding Microstructure Transition Triggered by High Magnetic Field Gradient During Directional Solidification of Al-Fe Eutectic Alloy, Mat. Charact., 188 (2022) 111920.
  • [27] Bayram Ü., Investigation of Changes in Microstructure and Microhardness Properties of Zn-Al Eutectic Alloy as a Result of Directionally Solidification at High Velocities, Erciyes Uni. J. Ins. Sci. Tech., 40 (2) (2024) 408-419.
  • [28]Çadırlı E., Gündüz M., The Dependence of Lamellar Spacing on Growth Rate and Temperature Gradient in the Lead-Tin Eutectic Alloy, J. Mat. Proc. Tech., 97 (2000) 74−81.
  • [29]Böyük U., Maraşlı N., Kaya H., Çadırlı E., Keşlioğlu K., Directional solidification of Al−Cu−Ag alloy, App. Physics A, 95 (2009) 923−932.
  • [30]Yamashita M., Resistivity Correction Factor for the Four-Probe Method, J. Phys. E: Sci. Instrum., 20 (1987) 1454-1456.
  • [31] Caignan A.G., Holt E.M., New 1,4-dihydropyridine Derivates with Hetero, Saturated B Rings, J. Chem. Cryst., 32 (2002) 315-323.
  • [32]Smits F. M., Measurement of Sheet Resistivities with the Four-Point Probe, The Bell System Tech. J., 37 (1958) 711-718.z
  • [33]Kim J. N., Lee C. S., Jin Y. S., Structure and Stoichiometry of MgxZny in Hot-Dipped Zn–Mg–Al Coating Layer on Interstitial-Free Steel, Met. Mater. Int., 24 (2018) 1090–1098.
  • [34]Gancarz T., Pstrus J., Characteristics of Sn–Zn Cast Alloys with the Addition of Ag and Cu, Arch. Metall. Mater., 60 (2015) 1603–1607.
  • [35]Kamal M., Meikhail M. S., El-Bediwi A. B., Gouda E. S., Study of Structural Changes and Properties for Sn–Zn9 Lead-Free Solder Alloy with Addition of Different Alloying Elements, Rad. Eff. Defect Solids, 160 (2005) 45–52.
  • [36]Lee W. B., Bang K. S., Jung S. B., Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints During Annealing, J. Alloys Comp., 390 (1-2) (2005) 212-219.
  • [37] Zhang L., Luo J., Zhang S., Yan J., Huang X., Wang L., Gao J., Interface Sintering Engineered Superhydrophobic and Durable Nanofiber Composite for High-Performance Electromagnetic Interference Shielding, J. Mat. Sci. Tech., 98 (2022) 62-71.
  • [38]Abdullaev R. N., Agazhanov A. S., Khairulin A. R., Samoshkin D. A., Stankus S. V., Thermophysical Properties of Magnesium in Solid and Liquid States, J. Eng. Thermo., 31 (2022) 384–401.
  • [39]Li S., Yang X., Hou J., Du W., A Review on Thermal Conductivity of Magnesium and its Alloys, J. Magnes. Alloys, 8 (2020) 78–90.
  • [40]Song J., She J., Chen D., Pan F., Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magnes. Alloys, 8 (2020) 1–41
Year 2025, Volume: 46 Issue: 1, 132 - 141, 25.03.2025
https://doi.org/10.17776/csj.1565431

Abstract

References

  • [1] Yamamoto K., Domoto K., Tobo M., Kawamizu T., Yamana T., Ota Y., Thermal Storage System to Provide Highly Efficient Electric Power Resilience in The Era of Renewable Energy, Mitsubishi Heavy Industries Tech. Rev., 57 (1) (2020) 1–11.
  • [2] Nazir H., Batool M., Bolivar Osorio F. J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Arunachala I., Kannan A. M., Recent Developments in Phase Change Materials for Energy Storage Applications: A Review, Int. J. Heat Mass Trans., 129 (2019) 491–523.
  • [3] Zhou, C., Wu S., Medium‐and High‐Temperature Latent Heat Thermal Energy Storage: Material Database, System Review, and Corrosivity Assessment. Int. J. Energy Research, 43 (2019) 621–661.
  • [4] Hirose A., Trends of Applications and Joining Technologies of Aluminum Alloys in Automobiles, Journal of JSAE, 61 (2007) 18-23.
  • [5] Sasabe S., Dissimilar Metal Joining Technology of Aluminum Alloy to Steel, Journal of JSAE, 61 (2007) 24-29.
  • [6] Porter D.A., Easterlirng K.E., Phase Transformations in Metals and Alloys, 2nd Ed., CRC Press, London, (1992).
  • [7] Caram R., Milenkovic S., Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification, J. Crys. Growth, 198–199 (1) (1999) 844-849.
  • [8] Fu H.Z., Liu L., Progress of Directional Solidification in Processing of Advanced Materials, Mat. Sci. Forum, 475–479 (2005) Zurich-Uetikon, Switzerland.
  • [9] Li Z., Li Y., Jiang S., Zhang J., Liu X., Zhang Q., Liu Q., Calculation and Experimental Verification of Zn–Al–Mg Phase Diagram. Coatings, 14 (4) (2024) 468.
  • [10] Delneuville P., Tribological Behaviour of ZnAl Alloys (ZA27) Compared with Bronze When Used as A Bearing Material with High Load and at Very Low Speed, Wear, 105 (4) (1985) 283-292.
  • [11] Auras R., Schvezov C., Wear Behavior, Microstructure, and Dimensional Stability of As-Cast Zinc-Aluminum/SIC (Metal Matrix Composites) Alloys, Metall. Mat. Trans. A, 35 (2004) 1579–1590.
  • [12] Kurz W., Fisher D.J., Fundamentals of Solidification, Chapter 5, 4th revised edition, Trans. Tech. Publications Ltd., Bäch, Switzerland, (1998).
  • [13] Zhang Y., Song C., Zhu L., Zheng H., Zhong H., Han Q., Zhai Q., Influence of Electric-Current Pulse Treatment on the Formation of Regular Eutectic Morphology in an Al-Si Eutectic Alloy, Metall. Mat. Trans. B, 42 (2011) 604–611.
  • [14] Kakitani R., de Gouveia G.L., Garcia A., Cheung N., Spinelli J.E., Thermal Analysis During Solidification of an Al–Cu Eutectic Alloy: Interrelation of Thermal Parameters, Microstructure and Hardness, J. Thermal Analy. Cal., 137 (2019) 983–996.
  • [15] Duffar T., Sylla L., Crystal Growth Processes Based on Capillarity. Chapter 6—Vertical Bridgman Technique and Dewetting, Wiley, New York, (2010) 355–411.
  • [16] Venkataraman R., Handbook of Radioactivity Analysis (4th edition). Chapter 4—Semiconductor detectors, Elsevier Inc., (2020) 458-459.
  • [17] Rios C.T., Oliveira M.F., Caram R., Botta F.W.J., Bolfarini C., Kiminami C.S., Directional and Rapid Solidification of Al–Nb–Ni Ternary Eutectic Alloy, Mat. Sci. Eng. A, 375–377 (2004) 565-570.
  • [18] Çadırlı E., Kaya H., Gündüz M., Directional Solidification and Characterization of the Cd–Sn Eutectic Alloy, J. Alloys Comp., 431 (1-2) (2007) 171-179.
  • [19] Li X., Ren Z., Fautrelle Y., Zhang Y., Esling C., Morphological Instabilities and Alignment of Lamellar Eutectics During Directional Solidification Under a Strong Magnetic Field, Acta Mat., 58 (4) (2010) 1403-1417.
  • [20]Cui C., Zhang J., Xue T., Liu L., Fu H., Effect of Solidification Rate on Microstructure and Solid/Liquid Interface Morphology of Ni–11.5 wt% Si Eutectic Alloy, J. Mat. Sci. Tech., 31 (3) (2015) 280-284.
  • [21] Karamazı Y., Bayram Ü., Ata P., Aksöz S., Keşlioğlu K., Maraşlı N., Dependence of microstructural, mechanical and electrical properties on growth rates in directional solidified Zn-Al-Bi eutectic alloy, Trans. Nonfer. Metals Soc. China, 26 (9) (2016) 2320-2335.
  • [22] Zuo X., Zhao C., Zhang L., Wang E., Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy, Materials, 9 (7) (2016) 569.
  • [23]Bayram Ü., Karamazı Y., Ata P., Aksöz S., Keşlioğlu K., Maraşlı N., Dependence Of Microstructure, Microhardness, Tensile Strength and Electrical Resistivity on Growth Rates for Directionally Solidified Zn-Al- Sb Eutectic Alloy, Int. J. Mat. Res., 107 (11) (2016) 1005-1015.
  • [24]Hötzer J., Steinmetz P., Dennstedt A., Genau A., Kellner M., Sargin I., Nestler B., Influence of Growth Velocity Variations on the Pattern Formation During the Directional Solidification of Ternary Eutectic Al-Ag-Cu, Acta Mat., 136 (2017) 335-346.
  • [25]Maraşlı N., Bayram, Ü., Aksöz, S., The variations of electrical resistivity and thermal conductivity with growth rate for the Zn–Al–Cu eutectic alloy. J. Mater. Sci.: Mater. Electron, 32 (2021) 18212–18223.
  • [26]Yan J., Liu T., Wang M., Sun J., Dong S., Zhao L., Wang Q., Constitutional Supercooling and Corresponding Microstructure Transition Triggered by High Magnetic Field Gradient During Directional Solidification of Al-Fe Eutectic Alloy, Mat. Charact., 188 (2022) 111920.
  • [27] Bayram Ü., Investigation of Changes in Microstructure and Microhardness Properties of Zn-Al Eutectic Alloy as a Result of Directionally Solidification at High Velocities, Erciyes Uni. J. Ins. Sci. Tech., 40 (2) (2024) 408-419.
  • [28]Çadırlı E., Gündüz M., The Dependence of Lamellar Spacing on Growth Rate and Temperature Gradient in the Lead-Tin Eutectic Alloy, J. Mat. Proc. Tech., 97 (2000) 74−81.
  • [29]Böyük U., Maraşlı N., Kaya H., Çadırlı E., Keşlioğlu K., Directional solidification of Al−Cu−Ag alloy, App. Physics A, 95 (2009) 923−932.
  • [30]Yamashita M., Resistivity Correction Factor for the Four-Probe Method, J. Phys. E: Sci. Instrum., 20 (1987) 1454-1456.
  • [31] Caignan A.G., Holt E.M., New 1,4-dihydropyridine Derivates with Hetero, Saturated B Rings, J. Chem. Cryst., 32 (2002) 315-323.
  • [32]Smits F. M., Measurement of Sheet Resistivities with the Four-Point Probe, The Bell System Tech. J., 37 (1958) 711-718.z
  • [33]Kim J. N., Lee C. S., Jin Y. S., Structure and Stoichiometry of MgxZny in Hot-Dipped Zn–Mg–Al Coating Layer on Interstitial-Free Steel, Met. Mater. Int., 24 (2018) 1090–1098.
  • [34]Gancarz T., Pstrus J., Characteristics of Sn–Zn Cast Alloys with the Addition of Ag and Cu, Arch. Metall. Mater., 60 (2015) 1603–1607.
  • [35]Kamal M., Meikhail M. S., El-Bediwi A. B., Gouda E. S., Study of Structural Changes and Properties for Sn–Zn9 Lead-Free Solder Alloy with Addition of Different Alloying Elements, Rad. Eff. Defect Solids, 160 (2005) 45–52.
  • [36]Lee W. B., Bang K. S., Jung S. B., Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints During Annealing, J. Alloys Comp., 390 (1-2) (2005) 212-219.
  • [37] Zhang L., Luo J., Zhang S., Yan J., Huang X., Wang L., Gao J., Interface Sintering Engineered Superhydrophobic and Durable Nanofiber Composite for High-Performance Electromagnetic Interference Shielding, J. Mat. Sci. Tech., 98 (2022) 62-71.
  • [38]Abdullaev R. N., Agazhanov A. S., Khairulin A. R., Samoshkin D. A., Stankus S. V., Thermophysical Properties of Magnesium in Solid and Liquid States, J. Eng. Thermo., 31 (2022) 384–401.
  • [39]Li S., Yang X., Hou J., Du W., A Review on Thermal Conductivity of Magnesium and its Alloys, J. Magnes. Alloys, 8 (2020) 78–90.
  • [40]Song J., She J., Chen D., Pan F., Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magnes. Alloys, 8 (2020) 1–41
There are 40 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Natural Sciences
Authors

Ümit Bayram 0000-0001-8760-8024

Publication Date March 25, 2025
Submission Date October 11, 2024
Acceptance Date January 3, 2025
Published in Issue Year 2025Volume: 46 Issue: 1

Cite

APA Bayram, Ü. (2025). Thermophysical Properties of Directionally Solidified the Zn-Mg-Al Eutectic Alloy and the Effect of Growth Rates on Electrical Properties. Cumhuriyet Science Journal, 46(1), 132-141. https://doi.org/10.17776/csj.1565431