Research Article
BibTex RIS Cite

Isocitrate Dehydrogenase: Three Subunits in Different Cancer Types—Changes in Gene Expression, Mutation Status, and Cancer Progression.

Year 2025, Volume: 46 Issue: 1, 13 - 21, 25.03.2025
https://doi.org/10.17776/csj.1557751

Abstract

The isocitrate dehydrogenase (IDH) gene encodes three protein isoforms (IDH1, IDH2 and IDH3). IDH3 exists in three subunits (IDH3A, IDH3B, and IDH3G). Examining the gene expression level and mutation status of IDH3 subunits could help find new diagnoses or treatment options for specific cancer types. Until now, studies on the IDH3 enzyme have been focused on the IDH3A subunit and a few types of cancer. In our study, the effect of IDH3A, IDH3B, and IDH3G expression changes on cancer progression and survival in the ten major cancer types were investigated using bioinformatic tools. Then, the impact of mutation status on cancer progression was examined in the TCGA database. The expression level of IDH3 subunits increased as the bladder, breast, colon, esophageal, lung, and stomach cancers progressed. The elevated expression level of all IDH3 subunit expressions leads to poor prognosis in colon, esophageal, lung, prostate, and stomach cancers. The cumulative alteration rates revealed low-frequency (0.3-5.9 %) mutations in all IDH3 subunits. IDH3A, IDH3B, and IDH3G expression was significantly altered after mutation among all types of cancer studied except the prostate. Our data showed that there may be correlation between the mutation status of the IDH3 subunits and breast, esophageal, lung and stomach cancer progression.

References

  • [1] D'Adamo Jr A.F., Haft D.E., An alternate pathway of α-ketoglutarate catabolism in the isolated, perfused rat liver: I. Studies with dl-glutamate-2-and-5-14C, Journal of Biological Chemistry, 240 (2) (1965) 613-617.
  • [2] Pollard P.J., Ratcliffe P.J., Puzzling patterns of predisposition, Science, 324 (5924) (2009) 192-194.
  • [3] Rosiers C., Fernandez C.A., David F., Brunengraber H., Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediates, Journal of Biological Chemistry, 269 (44) (1994) 27179-27182.
  • [4] Barnes L.D., Kuehn G.D., Atkinson D.E., Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties, Biochemistry, 10 (21) (1971) 3939-3944.
  • [5] Huang Y.C., Colman R.F., Subunit location and sequences of the cysteinyl peptides of pig heart NAD-dependent isocitrate dehydrogenase, Biochemistry, 29 (36) (1990) 8266-8273.
  • [6] Ma T., Peng Y., Huang W., Liu Y., Ding J., The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase, Scientific Reports, 7 (1) (2017) 41882.
  • [7] Huh T.L., Kim Y.O., Oh I.U., Song B.J., Inazawa J., Assignment of the Human Mitochondrial NAD+-Specific Isocitrate Dehydrogenase α Subunit (IDH3A) Gene to 15q25.1→q25.2 by in Situ Hybridization, Genomics, 2 (32) (1996) 295-296.
  • [8] Hartong D.T., Dange M., McGee T.L., Berson E.L., Dryja T.P., Colman R.F., Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle, Nature Genetics, 40 (10) (2008) 1230-1234.
  • [9] Zhu S., Huang J., Xu R., Wang Y., Wan Y., McNeel R., Schwaid A.G., Chen X., Zhang Y., Du J., Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability, Journal of Biological Chemistry, 298 (9) (2022).
  • [10] Sun W., Zhang Q., A novel variant in IDH3A identified in a case with Leber congenital amaurosis accompanied by macular pseudocoloboma, Ophthalmic Genetics, 39 (5) (2018) 662-663.
  • [11] Zeng L., Morinibu A., Kobayashi M., Zhu Y., Wang X., Goto Y., Harada H., Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis, Oncogene, 34 (36) (2015) 4758-4766.
  • [12] Bhat, G.R., Sethi, I., Sadida, H.Q., Rah, B., Mir, R., Algehainy, N., Albalawi, I.A., Masoodi, T., Subbaraj, G.K., Jamal, F., Singh, M., Kumar, R., Macha, M.A., Uddin, S., Al-Shabeeb Akil, A.S., Haris, M., Bhat, A.A. Cancer cell plasticity: From cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer and Metastasis Reviews, 43(1) (2024) 197-228.
  • [13] Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: a cancer journal for clinicians, 71 (3) (2021) 209-249.
  • [14] Nadhan R., Kashyap S., Mertens K., The role of isocitrate dehydrogenase in cancer and aging, Journal of Clinical Medicine, 9 (4) (2020) 1135.
  • [15] Atalay E.B., Kayali H.A., Aydin N., Yilmaz G., The elevated D-2-hydroxyglutarate level found as a characteristic metabolic change of colon cancer in both in vitro and in vivo models, Biochemical and Biophysical Research Communications, 627 (2022) 191-199.
  • [16] Atalay E.B., Senturk S., Kayali H.A., Aydin N., Wild-type IDH1 Knockout Leads to G0/G1 Arrest, Impairs Cancer Cell Proliferation, Altering Glycolysis, and the TCA Cycle in Colon Cancer, Biochemical Genetics, (2023) 1-17.
  • [17] Špačková J., Gotvaldová K., Dvořák A., Urbančoková A., Pospíšilová K., Větvička D., Mottl R., Smolková K., Biochemical background in mitochondria affects 2HG production by IDH2 and ADHFE1 in breast carcinoma, Cancers, 13 (7) (2021) 1709.
  • [18] Li H., Li J.J., Lu W., Yang J., Xia Y., Huang P., Targeting Mitochondrial IDH2 Enhances Antitumor Activity of Cisplatin in Lung Cancer via ROS-Mediated Mechanism, Biomedicines, 11 (2) (2023) 475.
  • [19] Zarei M., Hajihassani O., Hue J.J., Graor H.J., Rothermel L.D., Winter J.M., Targeting wild-type IDH1 enhances chemosensitivity in pancreatic cancer, BioRxiv, (2023) 2023-03.
  • [20] Chhikara B.S., Parang K., Global Cancer Statistics 2022: the trends projection analysis, Chemical Biology Letters, 10 (1) (2023) 451-451.
  • [21] Iscan E., Karakülah G., Ekin U., Ozturk M., Uzuner H., Suner A., TAp73α is Upregulated in the Most Common Human Cancers, Molecular Biology, 56 (2) (2022) 251-256.
  • [22] Guneri-Sozeri P.Y., Erkek-Ozhan S., Identification of the gene expression changes and gene regulatory aspects in ELF3 mutant bladder cancer, Molecular Biology Reports, 49 (4) (2022) 3135-3147.
  • [23] Chandrashekar D.S., Bashel B., Balasubramanya S.A.H., Creighton C.J., Ponce-Rodriguez I., Chakravarthi B.V., Varambally S., UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia, 19 (8) (2017) 649-658.
  • [24] Atalay E.B., Aydin N., Yilmaz G., Ozturk M., Gene expression changes of isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 affect carcinogenesis and survival probability, Gümüşhane University Journal Science Technology, 14 (1) (2024) 370-378.
  • [25] Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Angarita F.A., Delong L., Reese M., Schaefer C.F., Zhang W., Gabrielli A., Wang W., Sander C., Schultz N., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discovery, 2 (5) (2012) 401-404.
  • [26] Sheng K.L., Kang L., Pridham K.J., Dunkenberger L.E., Sheng Z., Varghese R.T., An integrated approach to biomarker discovery reveals gene signatures highly predictive of cancer progression, Scientific Reports, 10 (1) (2020) 21246.
  • [27] Reeves H.C., Daumy G.O., Lin C.C., Houston M., NADP+-specific isocitrate dehydrogenase of Escherichia coli: I. Purification and characterization, Biochimica et Biophysica Acta (BBA)-Enzymology, 258 (1) (1972) 27-39.
  • [28] Koh H.J., Lee S.M., Son B.G., Lee S.H., Ryoo Z.Y., Chang K.T., Moon Y., Huh T.L., Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism, Journal of Biological Chemistry, 279 (38) (2004) 39968-39974.
  • [29] Jo S.H., Son M.K., Koh H.J., Lee S.M., Song I.H., Kim Y.O., Lee J.H., Lee H.J., Huh T.L., Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase, Journal of Biological Chemistry, 276 (19) (2001) 16168-16176.
  • [30] Liu X., Qiao Y., Ting X., Si W., Isocitrate dehydrogenase 3A, a rate-limiting enzyme of the TCA cycle, promotes hepatocellular carcinoma migration and invasion through regulation of MTA1, a core component of the NuRD complex, American Journal of Cancer Research, 10 (10) (2020) 3212.
  • [31] May J.L., Kouri F.M., Hurley L.A., Liu J., Tommasini-Ghelfi S., Ji Y., Xu Z., Morrow J.L., Westfield G., Stegh A.H., IDH3α regulates one-carbon metabolism in glioblastoma, Science Advances, 5 (1) (2019) eaat0456.
  • [32] Bensalah K., Montorsi F., Shariat S.F., Challenges of cancer biomarker profiling, European Urology, 52 (6) (2007) 1601-1609.
  • [33] He Q., Chen J., Xie Z., Chen Z., Wild-Type Isocitrate Dehydrogenase-Dependent Oxidative Decarboxylation and Reductive Carboxylation in Cancer and Their Clinical Significance, Cancers, 14 (23) (2022) 5779.
  • [34] Carosi, F., Broseghini, E., Fabbri, L., Corradi, G., Gili, R., Forte, V., Roncarati, R., Filippini, D.M., Ferracin, M., Targeting isocitrate dehydrogenase (IDH) in solid tumors: Current evidence and future perspectives. Cancers, 16 (15) (2024) 2752.
  • [35] Fattal-Valevski A., Eliyahu H., Fraenkel N.D., Elmaliach G., Hausman-Kedem M., Shaag A., Tene O., Kanner A., Elpeleg O., Homozygous mutation, p. Pro304His, in IDH3A, encoding isocitrate dehydrogenase subunit is associated with severe encephalopathy in infancy, Neurogenetics, 18 (2017) 57-61.
  • [36] Peter V.G., Nikopoulos K., Quinodoz M., Granse L., Farinelli P., Superti-Furga A., Andréasson S., Rivolta, C., A novel missense variant in IDH3A causes autosomal recessive retinitis pigmentosa, Ophthalmic Genetics, 40 (2) (2019) 177-181.
  • [37] Krell D., Assoku M., Galloway M., Mulholland P., Tomlinson I., Bardella C., Bourton T., Wilkins S., Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma, PloS One, 6 (5) (2011) e19868.
  • [38] Wu Q., Zhang W., Xue L., Wang Y., Fu M., Ma L., Zhang L., Li B., Lin X., Zhan Q.M., APC/C-CDH1–Regulated IDH3β Coordinates with the Cell Cycle to Promote Cell Proliferation, Cancer Research, 79 (13) (2019) 3281-3293.
  • [39] Wang X., Xu B., Du J., Xia J., Lei G., Zhou C., Feng Y., Zhang H., Li Y., Characterization of pyruvate metabolism and citric acid cycle patterns predicts response to immunotherapeutic and ferroptosis in gastric cancer, Cancer Cell International, 22 (1) (2022) 1-20.
  • [40] Zhou J., Yong W.P., Yap C.S., Vijayaraghavan A., Sinha R.A., Singh B.K., Kwok T.C., Leung T., Tan H.M., Koh Y.W., Wong R.S., Lam K.P., An integrative approach identified genes associated with drug response in gastric cancer, Carcinogenesis, 36 (4) (2015) 441-451.
  • [41] Huang K., Han Y., Chen Y., Shen H., Zeng S., Cai C., Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy, Molecular Cancer, 24(1) (2025) 7.
  • [42] Mellinghoff I. K., Lu M., Wen P. Y., Taylor J. W., Maher E. A., Arrillaga-Romany I., Peters K.B., Ellingson B.M., Rosenblum M.K., Chun S., Le K., Tassinari A., Choe S., Toubouti Y., Schoenfeld S., Pandya S.S., Hassan I., Steelman L., Clarke J.L., Cloughesy T.F., Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial, Nature medicine, 29(3) (2023) 615-622.
  • [43] Zarei M., Hajihassani O., Hue J. J., Loftus A. W., Graor H. J., Nakazzi F., Naji P., Boutros C.S., Uppin V., Vaziri-Gohar A., Shalaby A.S., Asara J. M., Rothermel L.D., Brody J.R., Winter J.M., IDH1 inhibition potentiates chemotherapy efficacy in pancreatic cancer, Cancer Research, 84(18) (2024) 3072-3085.
Year 2025, Volume: 46 Issue: 1, 13 - 21, 25.03.2025
https://doi.org/10.17776/csj.1557751

Abstract

References

  • [1] D'Adamo Jr A.F., Haft D.E., An alternate pathway of α-ketoglutarate catabolism in the isolated, perfused rat liver: I. Studies with dl-glutamate-2-and-5-14C, Journal of Biological Chemistry, 240 (2) (1965) 613-617.
  • [2] Pollard P.J., Ratcliffe P.J., Puzzling patterns of predisposition, Science, 324 (5924) (2009) 192-194.
  • [3] Rosiers C., Fernandez C.A., David F., Brunengraber H., Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediates, Journal of Biological Chemistry, 269 (44) (1994) 27179-27182.
  • [4] Barnes L.D., Kuehn G.D., Atkinson D.E., Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties, Biochemistry, 10 (21) (1971) 3939-3944.
  • [5] Huang Y.C., Colman R.F., Subunit location and sequences of the cysteinyl peptides of pig heart NAD-dependent isocitrate dehydrogenase, Biochemistry, 29 (36) (1990) 8266-8273.
  • [6] Ma T., Peng Y., Huang W., Liu Y., Ding J., The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase, Scientific Reports, 7 (1) (2017) 41882.
  • [7] Huh T.L., Kim Y.O., Oh I.U., Song B.J., Inazawa J., Assignment of the Human Mitochondrial NAD+-Specific Isocitrate Dehydrogenase α Subunit (IDH3A) Gene to 15q25.1→q25.2 by in Situ Hybridization, Genomics, 2 (32) (1996) 295-296.
  • [8] Hartong D.T., Dange M., McGee T.L., Berson E.L., Dryja T.P., Colman R.F., Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle, Nature Genetics, 40 (10) (2008) 1230-1234.
  • [9] Zhu S., Huang J., Xu R., Wang Y., Wan Y., McNeel R., Schwaid A.G., Chen X., Zhang Y., Du J., Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability, Journal of Biological Chemistry, 298 (9) (2022).
  • [10] Sun W., Zhang Q., A novel variant in IDH3A identified in a case with Leber congenital amaurosis accompanied by macular pseudocoloboma, Ophthalmic Genetics, 39 (5) (2018) 662-663.
  • [11] Zeng L., Morinibu A., Kobayashi M., Zhu Y., Wang X., Goto Y., Harada H., Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis, Oncogene, 34 (36) (2015) 4758-4766.
  • [12] Bhat, G.R., Sethi, I., Sadida, H.Q., Rah, B., Mir, R., Algehainy, N., Albalawi, I.A., Masoodi, T., Subbaraj, G.K., Jamal, F., Singh, M., Kumar, R., Macha, M.A., Uddin, S., Al-Shabeeb Akil, A.S., Haris, M., Bhat, A.A. Cancer cell plasticity: From cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer and Metastasis Reviews, 43(1) (2024) 197-228.
  • [13] Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: a cancer journal for clinicians, 71 (3) (2021) 209-249.
  • [14] Nadhan R., Kashyap S., Mertens K., The role of isocitrate dehydrogenase in cancer and aging, Journal of Clinical Medicine, 9 (4) (2020) 1135.
  • [15] Atalay E.B., Kayali H.A., Aydin N., Yilmaz G., The elevated D-2-hydroxyglutarate level found as a characteristic metabolic change of colon cancer in both in vitro and in vivo models, Biochemical and Biophysical Research Communications, 627 (2022) 191-199.
  • [16] Atalay E.B., Senturk S., Kayali H.A., Aydin N., Wild-type IDH1 Knockout Leads to G0/G1 Arrest, Impairs Cancer Cell Proliferation, Altering Glycolysis, and the TCA Cycle in Colon Cancer, Biochemical Genetics, (2023) 1-17.
  • [17] Špačková J., Gotvaldová K., Dvořák A., Urbančoková A., Pospíšilová K., Větvička D., Mottl R., Smolková K., Biochemical background in mitochondria affects 2HG production by IDH2 and ADHFE1 in breast carcinoma, Cancers, 13 (7) (2021) 1709.
  • [18] Li H., Li J.J., Lu W., Yang J., Xia Y., Huang P., Targeting Mitochondrial IDH2 Enhances Antitumor Activity of Cisplatin in Lung Cancer via ROS-Mediated Mechanism, Biomedicines, 11 (2) (2023) 475.
  • [19] Zarei M., Hajihassani O., Hue J.J., Graor H.J., Rothermel L.D., Winter J.M., Targeting wild-type IDH1 enhances chemosensitivity in pancreatic cancer, BioRxiv, (2023) 2023-03.
  • [20] Chhikara B.S., Parang K., Global Cancer Statistics 2022: the trends projection analysis, Chemical Biology Letters, 10 (1) (2023) 451-451.
  • [21] Iscan E., Karakülah G., Ekin U., Ozturk M., Uzuner H., Suner A., TAp73α is Upregulated in the Most Common Human Cancers, Molecular Biology, 56 (2) (2022) 251-256.
  • [22] Guneri-Sozeri P.Y., Erkek-Ozhan S., Identification of the gene expression changes and gene regulatory aspects in ELF3 mutant bladder cancer, Molecular Biology Reports, 49 (4) (2022) 3135-3147.
  • [23] Chandrashekar D.S., Bashel B., Balasubramanya S.A.H., Creighton C.J., Ponce-Rodriguez I., Chakravarthi B.V., Varambally S., UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia, 19 (8) (2017) 649-658.
  • [24] Atalay E.B., Aydin N., Yilmaz G., Ozturk M., Gene expression changes of isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 affect carcinogenesis and survival probability, Gümüşhane University Journal Science Technology, 14 (1) (2024) 370-378.
  • [25] Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Angarita F.A., Delong L., Reese M., Schaefer C.F., Zhang W., Gabrielli A., Wang W., Sander C., Schultz N., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discovery, 2 (5) (2012) 401-404.
  • [26] Sheng K.L., Kang L., Pridham K.J., Dunkenberger L.E., Sheng Z., Varghese R.T., An integrated approach to biomarker discovery reveals gene signatures highly predictive of cancer progression, Scientific Reports, 10 (1) (2020) 21246.
  • [27] Reeves H.C., Daumy G.O., Lin C.C., Houston M., NADP+-specific isocitrate dehydrogenase of Escherichia coli: I. Purification and characterization, Biochimica et Biophysica Acta (BBA)-Enzymology, 258 (1) (1972) 27-39.
  • [28] Koh H.J., Lee S.M., Son B.G., Lee S.H., Ryoo Z.Y., Chang K.T., Moon Y., Huh T.L., Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism, Journal of Biological Chemistry, 279 (38) (2004) 39968-39974.
  • [29] Jo S.H., Son M.K., Koh H.J., Lee S.M., Song I.H., Kim Y.O., Lee J.H., Lee H.J., Huh T.L., Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase, Journal of Biological Chemistry, 276 (19) (2001) 16168-16176.
  • [30] Liu X., Qiao Y., Ting X., Si W., Isocitrate dehydrogenase 3A, a rate-limiting enzyme of the TCA cycle, promotes hepatocellular carcinoma migration and invasion through regulation of MTA1, a core component of the NuRD complex, American Journal of Cancer Research, 10 (10) (2020) 3212.
  • [31] May J.L., Kouri F.M., Hurley L.A., Liu J., Tommasini-Ghelfi S., Ji Y., Xu Z., Morrow J.L., Westfield G., Stegh A.H., IDH3α regulates one-carbon metabolism in glioblastoma, Science Advances, 5 (1) (2019) eaat0456.
  • [32] Bensalah K., Montorsi F., Shariat S.F., Challenges of cancer biomarker profiling, European Urology, 52 (6) (2007) 1601-1609.
  • [33] He Q., Chen J., Xie Z., Chen Z., Wild-Type Isocitrate Dehydrogenase-Dependent Oxidative Decarboxylation and Reductive Carboxylation in Cancer and Their Clinical Significance, Cancers, 14 (23) (2022) 5779.
  • [34] Carosi, F., Broseghini, E., Fabbri, L., Corradi, G., Gili, R., Forte, V., Roncarati, R., Filippini, D.M., Ferracin, M., Targeting isocitrate dehydrogenase (IDH) in solid tumors: Current evidence and future perspectives. Cancers, 16 (15) (2024) 2752.
  • [35] Fattal-Valevski A., Eliyahu H., Fraenkel N.D., Elmaliach G., Hausman-Kedem M., Shaag A., Tene O., Kanner A., Elpeleg O., Homozygous mutation, p. Pro304His, in IDH3A, encoding isocitrate dehydrogenase subunit is associated with severe encephalopathy in infancy, Neurogenetics, 18 (2017) 57-61.
  • [36] Peter V.G., Nikopoulos K., Quinodoz M., Granse L., Farinelli P., Superti-Furga A., Andréasson S., Rivolta, C., A novel missense variant in IDH3A causes autosomal recessive retinitis pigmentosa, Ophthalmic Genetics, 40 (2) (2019) 177-181.
  • [37] Krell D., Assoku M., Galloway M., Mulholland P., Tomlinson I., Bardella C., Bourton T., Wilkins S., Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma, PloS One, 6 (5) (2011) e19868.
  • [38] Wu Q., Zhang W., Xue L., Wang Y., Fu M., Ma L., Zhang L., Li B., Lin X., Zhan Q.M., APC/C-CDH1–Regulated IDH3β Coordinates with the Cell Cycle to Promote Cell Proliferation, Cancer Research, 79 (13) (2019) 3281-3293.
  • [39] Wang X., Xu B., Du J., Xia J., Lei G., Zhou C., Feng Y., Zhang H., Li Y., Characterization of pyruvate metabolism and citric acid cycle patterns predicts response to immunotherapeutic and ferroptosis in gastric cancer, Cancer Cell International, 22 (1) (2022) 1-20.
  • [40] Zhou J., Yong W.P., Yap C.S., Vijayaraghavan A., Sinha R.A., Singh B.K., Kwok T.C., Leung T., Tan H.M., Koh Y.W., Wong R.S., Lam K.P., An integrative approach identified genes associated with drug response in gastric cancer, Carcinogenesis, 36 (4) (2015) 441-451.
  • [41] Huang K., Han Y., Chen Y., Shen H., Zeng S., Cai C., Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy, Molecular Cancer, 24(1) (2025) 7.
  • [42] Mellinghoff I. K., Lu M., Wen P. Y., Taylor J. W., Maher E. A., Arrillaga-Romany I., Peters K.B., Ellingson B.M., Rosenblum M.K., Chun S., Le K., Tassinari A., Choe S., Toubouti Y., Schoenfeld S., Pandya S.S., Hassan I., Steelman L., Clarke J.L., Cloughesy T.F., Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial, Nature medicine, 29(3) (2023) 615-622.
  • [43] Zarei M., Hajihassani O., Hue J. J., Loftus A. W., Graor H. J., Nakazzi F., Naji P., Boutros C.S., Uppin V., Vaziri-Gohar A., Shalaby A.S., Asara J. M., Rothermel L.D., Brody J.R., Winter J.M., IDH1 inhibition potentiates chemotherapy efficacy in pancreatic cancer, Cancer Research, 84(18) (2024) 3072-3085.
There are 43 citations in total.

Details

Primary Language English
Subjects Bioinformatics and Computational Biology (Other), Cancer Biology
Journal Section Natural Sciences
Authors

Esra Bulut Atalay 0000-0002-1615-0535

Publication Date March 25, 2025
Submission Date September 28, 2024
Acceptance Date January 26, 2025
Published in Issue Year 2025Volume: 46 Issue: 1

Cite

APA Bulut Atalay, E. (2025). Isocitrate Dehydrogenase: Three Subunits in Different Cancer Types—Changes in Gene Expression, Mutation Status, and Cancer Progression. Cumhuriyet Science Journal, 46(1), 13-21. https://doi.org/10.17776/csj.1557751