Research Article
BibTex RIS Cite

Some Factors Affecting Free and Immobilized Amylase Activity

Year 2025, Volume: 46 Issue: 1, 91 - 97, 25.03.2025
https://doi.org/10.17776/csj.1549149

Abstract

In our study, we prepared chitosan beads and immobilized bacterial amylase enzyme on these beads; Parameters such as comparing the optimization conditions (pH, pH stability, temperature, thermal stability, substrate concentration) of free bacterial amylase and amylase immobilized on chitosan beads and investigating the effect of immobilization in its usage areas are included. The immobilized enzyme showed better activity at both lower and higher pH levels compared to the free enzyme. When considering pH stability, the results were consistent with the pH activity values. In other words, both free and immobilized amylase exhibited the highest activity at the same pH levels. However, the free amylase showed less stability at low and high pH levels compared to the immobilized amylase. In terms of temperature-dependent activity, it was found that both free and immobilized enzymes showed the best activity at the same temperature. However, the immobilized enzyme showed activity at higher temperatures than the free enzyme. Moreover, when studying the effect of substrate concentration on free and immobilized enzymes, both types of enzymes exhibited the best activity in the same concentration of starch solution. In this study, factors affecting immobilized and free amylase activity were examined.

References

  • [1] Telefoncu A., Enzimoloji Lisansüstü Yaz Okulu (Ed) Telefoncu A. İçinde: İmmobilize Enzimler. Ege Üniversitesi. Fen Fakültesi Baskı Atölyesi, İzmir (1997). 193-248.
  • [2] Saraydın D., Isıkver Y., and Karadag E. Adsorption of Phenazine Dyes Using Poly (hydroxamic acid) .Hydrogels from Aqueous Solutions Polymer Engıneerıng and Scıence, (2018). 310-318
  • [3] LiuB., Yang Y. H., Wu Z. Y., Wang H., Shen G. L., Yu R. Q.,“A Potentiometric Acetylcholinesterase Biosensor Based on Plasma-Polymerized Film”, Sensors and Actuators B., 104 (2005) 186-190.
  • [4] Doonng R.A., Tsai H. C., “Immobilization and Characterization of Sol-GelEncapsulated Acetylcholinesterase Fiber Optic Biosensor”, Analytica Chimica Acta, 434 (2001) 239-246
  • [5] Özçömlekçi E., “Proteaz Enziminin Glutaraldehit Kullanarak Kovalent Bağlanma İle İmmobilazasyonunda Optimum Şartların Belirlenmesi”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye, (2006).
  • [6] Tekman Ş., Öner N., “Genel Biyokimya”, İstanbul Üniversitesi Eczacılık Fakültesi, İstanbul, (1994) 47-49
  • [7] Bernfeld P., Amylases, alpha and beta. In: Colowick, S.P. and Kaplan, N.O (eds.). Methods in enzymology. New York: Academic Press. (1955). v.1 149- 158.
  • [8] Ali I., Akbar A., Yanwisetpakdee B., Prasongsuk S., Lotrakul P., Punnapayak H., Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis, BioMed. Research International, (2014) 106937.
  • [9] Parashar D., Satyanarayana T., A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency, Journal of Industrial Microbiology and Biotechnology, 43(4) (2016) 473-484.
  • [10] Sindhu R., Binod P., Madhavan A., Beevi U. S., Mathew A. K., Abraham A., Pandey A., Kumar V., Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency, Bioresource Technology, 245 (2017) 1740- 1748.
  • [11] Başak E., Modifiye edilmiş kitosan boncuklar büzerinde katalaz immobilizasyon, Yüksek lisans tezi,Celal Bayar Üniversitesi Kimya Bölümü, MANİSA. (2011).
  • [12] Iyengar L., Prabhakara R., Urease bound to chitin with glutaraldehyde, Biotechnology and Bioengineering. 21 (1979) 1333-1343.
  • [13] Hoffmann C., Pinelo M., Woodley J. M., Daugaard A. E., Development of a thiol‐ ene based screening platform for enzyme immobilization demonstrated using horseradish peroxidase, Biotechnology Progress, 33(5) (2017) 1267-1277.
  • [14] Gusek T.V., Tyn M.T., Kinsella J.E., Immobilizatiom of serine protease from thermomonospora fusca YX on porous glass, Biotechnology and Bioengineering, 36 (1990) 411-416.
  • [15] Kery V., Haplova J., Tıhlarık K.J., Factors influencing the activity and thermostability of immobilized porcine pancreatic lipase, Journal of Chemical Technology and Biotechnology, 48 (1990) 201-207.
  • [16] Zucca P., Sanjust E., Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules, 19(9) (2014) 14139-14194
  • [17] Grigoras A. G., Catalase immobilization—A review, Biochemical Engineering Journal, 117 (2017) 1–20.
  • [18] Cao L., Immobilized enzymes: science or art?, Current Opinion in Chemical Biology, 9(2) (2005) 217-226.
  • [19] Vaghari H., Jafarizadeh- Malmırı H., Mohammadlou M., Berenjian A., Anarjan N., Jafari N., Nasiri S., Application of Magnetic Nanoparticles in Smart Enzyme Immobilization, Biotechnology Letters, 38(2) (2016) 223–233.
  • [20] Andersson L., Studies on starch structure and the differential properties of starch branching enzymes, PhD Thesis, Swedish University of Agricultural Sciences, Uppsala, 36 (2001).
  • [21] Zdarta J., Meyer A. S., Jesionowski T., Pinelo M. A., General overview of support materials for enzyme immobilization: characteristics, properties, practical utility, Catalysts, 8(2) (2018) 92.
  • [22] Yarar Ü., α-Amilaz Enziminin Fotoimmobilizasyonu, Yüksek Lisans Tezi, Marmara Üniversitesi, İstanbul (2008).
  • [23] Najafi M. F., Deobagkar D., Deobagkar,D., Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20, Protein Expression and Purification. 41 (2005) 349-354.
  • [24] Rana N., Walia A., Gaur A., α-Amylases from microbial sources and its potential applications in various industries, National Academy Science Letters, 36(1) (2013) 9-17.
  • [25] Kalia S., Avérous L., Biopolymers: Biomedical and Environmental Applications, Massachusetts, USA: John Wiley & Sons. (2011).
  • [26] Sharma A., Satyanarayana T., Microbial acid-stable α-amylases: characteristics, genetic engineering and applications, Process Biochemistry, 48(2) (2013) 201-211.
  • [27] Çetinus Ş. A., Şahin E., Saraydin D., Preparation of Cu (II) adsorbed chitosan beads for catalase immobilization, Food Chemistry, 114(3) (2009) 962-969.
Year 2025, Volume: 46 Issue: 1, 91 - 97, 25.03.2025
https://doi.org/10.17776/csj.1549149

Abstract

References

  • [1] Telefoncu A., Enzimoloji Lisansüstü Yaz Okulu (Ed) Telefoncu A. İçinde: İmmobilize Enzimler. Ege Üniversitesi. Fen Fakültesi Baskı Atölyesi, İzmir (1997). 193-248.
  • [2] Saraydın D., Isıkver Y., and Karadag E. Adsorption of Phenazine Dyes Using Poly (hydroxamic acid) .Hydrogels from Aqueous Solutions Polymer Engıneerıng and Scıence, (2018). 310-318
  • [3] LiuB., Yang Y. H., Wu Z. Y., Wang H., Shen G. L., Yu R. Q.,“A Potentiometric Acetylcholinesterase Biosensor Based on Plasma-Polymerized Film”, Sensors and Actuators B., 104 (2005) 186-190.
  • [4] Doonng R.A., Tsai H. C., “Immobilization and Characterization of Sol-GelEncapsulated Acetylcholinesterase Fiber Optic Biosensor”, Analytica Chimica Acta, 434 (2001) 239-246
  • [5] Özçömlekçi E., “Proteaz Enziminin Glutaraldehit Kullanarak Kovalent Bağlanma İle İmmobilazasyonunda Optimum Şartların Belirlenmesi”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye, (2006).
  • [6] Tekman Ş., Öner N., “Genel Biyokimya”, İstanbul Üniversitesi Eczacılık Fakültesi, İstanbul, (1994) 47-49
  • [7] Bernfeld P., Amylases, alpha and beta. In: Colowick, S.P. and Kaplan, N.O (eds.). Methods in enzymology. New York: Academic Press. (1955). v.1 149- 158.
  • [8] Ali I., Akbar A., Yanwisetpakdee B., Prasongsuk S., Lotrakul P., Punnapayak H., Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis, BioMed. Research International, (2014) 106937.
  • [9] Parashar D., Satyanarayana T., A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency, Journal of Industrial Microbiology and Biotechnology, 43(4) (2016) 473-484.
  • [10] Sindhu R., Binod P., Madhavan A., Beevi U. S., Mathew A. K., Abraham A., Pandey A., Kumar V., Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency, Bioresource Technology, 245 (2017) 1740- 1748.
  • [11] Başak E., Modifiye edilmiş kitosan boncuklar büzerinde katalaz immobilizasyon, Yüksek lisans tezi,Celal Bayar Üniversitesi Kimya Bölümü, MANİSA. (2011).
  • [12] Iyengar L., Prabhakara R., Urease bound to chitin with glutaraldehyde, Biotechnology and Bioengineering. 21 (1979) 1333-1343.
  • [13] Hoffmann C., Pinelo M., Woodley J. M., Daugaard A. E., Development of a thiol‐ ene based screening platform for enzyme immobilization demonstrated using horseradish peroxidase, Biotechnology Progress, 33(5) (2017) 1267-1277.
  • [14] Gusek T.V., Tyn M.T., Kinsella J.E., Immobilizatiom of serine protease from thermomonospora fusca YX on porous glass, Biotechnology and Bioengineering, 36 (1990) 411-416.
  • [15] Kery V., Haplova J., Tıhlarık K.J., Factors influencing the activity and thermostability of immobilized porcine pancreatic lipase, Journal of Chemical Technology and Biotechnology, 48 (1990) 201-207.
  • [16] Zucca P., Sanjust E., Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules, 19(9) (2014) 14139-14194
  • [17] Grigoras A. G., Catalase immobilization—A review, Biochemical Engineering Journal, 117 (2017) 1–20.
  • [18] Cao L., Immobilized enzymes: science or art?, Current Opinion in Chemical Biology, 9(2) (2005) 217-226.
  • [19] Vaghari H., Jafarizadeh- Malmırı H., Mohammadlou M., Berenjian A., Anarjan N., Jafari N., Nasiri S., Application of Magnetic Nanoparticles in Smart Enzyme Immobilization, Biotechnology Letters, 38(2) (2016) 223–233.
  • [20] Andersson L., Studies on starch structure and the differential properties of starch branching enzymes, PhD Thesis, Swedish University of Agricultural Sciences, Uppsala, 36 (2001).
  • [21] Zdarta J., Meyer A. S., Jesionowski T., Pinelo M. A., General overview of support materials for enzyme immobilization: characteristics, properties, practical utility, Catalysts, 8(2) (2018) 92.
  • [22] Yarar Ü., α-Amilaz Enziminin Fotoimmobilizasyonu, Yüksek Lisans Tezi, Marmara Üniversitesi, İstanbul (2008).
  • [23] Najafi M. F., Deobagkar D., Deobagkar,D., Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20, Protein Expression and Purification. 41 (2005) 349-354.
  • [24] Rana N., Walia A., Gaur A., α-Amylases from microbial sources and its potential applications in various industries, National Academy Science Letters, 36(1) (2013) 9-17.
  • [25] Kalia S., Avérous L., Biopolymers: Biomedical and Environmental Applications, Massachusetts, USA: John Wiley & Sons. (2011).
  • [26] Sharma A., Satyanarayana T., Microbial acid-stable α-amylases: characteristics, genetic engineering and applications, Process Biochemistry, 48(2) (2013) 201-211.
  • [27] Çetinus Ş. A., Şahin E., Saraydin D., Preparation of Cu (II) adsorbed chitosan beads for catalase immobilization, Food Chemistry, 114(3) (2009) 962-969.
There are 27 citations in total.

Details

Primary Language English
Subjects Enzymes, Bioassays
Journal Section Natural Sciences
Authors

Taner Şahutoğlu 0009-0005-3206-2980

Derya Kızıloluk 0000-0002-0896-6550

Publication Date March 25, 2025
Submission Date September 13, 2024
Acceptance Date March 12, 2025
Published in Issue Year 2025Volume: 46 Issue: 1

Cite

APA Şahutoğlu, T., & Kızıloluk, D. (2025). Some Factors Affecting Free and Immobilized Amylase Activity. Cumhuriyet Science Journal, 46(1), 91-97. https://doi.org/10.17776/csj.1549149