Research Article
BibTex RIS Cite

Modeling the Effect of Heat Distribution in Photothermal Therapy by Using Computational Fluid Dynamics (CFD)

Year 2024, Volume: 45 Issue: 4, 750 - 755, 30.12.2024
https://doi.org/10.17776/csj.1534439

Abstract

Cancer is a mortal disorder around the world, and according to the World Health Organization (WHO), it is a leading cause of death, causing nearly 10 million deaths in 2020. It is commonly treated by chemotherapy, radiotherapy, and surgery. However, the undesirable effects of these treatments encouraged clinicians to find better therapies, such as photothermal therapy (PTT). PTT has been commonly used for being less harmful to the healthy tissues near the cancer cells. However, it is necessary to know that the heat distribution is suitable and that the surrounding tissue is not overheated. This work uses Computational Fluid Dynamics (CFD) to model the cancer cell and the healthy tissue around it as a 3D model using ICEM CFD, a pre-processing program of Ansys Fluent 18.2. It is found that wall shear stress is high, up to 4600 Pa in the top parts of the cell, and lower in others. The highest pressure on the cancer cell goes up to 36000 Pa in the lower parts of the cell. The results of this work could guide researchers in optimizing the photothermal therapy of cancer cells, and the modeling approach could be applied to investigate alternative therapies.

References

  • [1] Ferlay J., Ervik M., Lam F., Colombet M., Mery L., Pineros M., Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer. https://gco.iarc.fr/today. Retrieved July, 2024.
  • [2] Gong F., Liu J., Yang J., Qin J., et al., Effective Thermal Transport Properties in Multiphase Biological Systems Containing Carbon Nanomaterials, RSC Adv., 7(22) (2017) 13615–13622.
  • [3] Cherukula K., Manickavasagam Lekshmi K., Uthaman S., Cho K., Cho C-S., Park I-K., Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging, Nanomater, 6(4) (2016) 76.
  • [4] Yang K., Feng L., and Liu Z., Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy, Adv. Drug Deliv. Rev., 105 (2016) 228–241.
  • [5] Cherukuri P., Glazer E.S., Curley S.A., Targeted hyperthermia using metal nanoparticles, Adv. Drug Deliv. Rev., 62(3) (2010) 339–345.
  • [6] Manthe R. L., Foy S. P., Krishnamurthy N., Sharma B., Labhasetwar V., Tumor Ablation and Nanotechnology, Mol. Pharm., 7(6) (2010) 1880–1898.
  • [7] Lal S., Clare S.E., Halas NJ., Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact, Acc. Chem. Res., 41(12) (2008) 1842–1851.
  • [8] Robinson J.T., Tabakman S.M., Liang Y., Wang H., et al., Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance For Photothermal Therapy, J. Am. Chem. Soc., 133(17) (2011) 6825–6831.
  • [9] Liu H., Chen D., Li L., Liu T., et al., Multifunctional Gold Nanoshells On Silica Nanorattles: A Platform for the Combination Of Photothermal Therapy And Chemotherapy With Low Systemic Toxicity, Angew. Chem. Int. Ed. Engl., 50(4) (2011) 891–895.
  • [10] Cheng L., Yang K., Chen Q., Liu Z., Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer, ACS Nano, 6(6) (2012) 5605–5613.
  • [11] van der Zee J., Heating the Patient: A Promising Approach?, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol., 13(8) (2002) 1173–1184.
  • [12] Dahl O., Interaction of Heat and Drugs in Vitro and in Vivo. In: Seegenschmiedt M.H., Fessenden P., Vernon C.C., (Eds.). Thermoradiotherapy and Thermochemotherapy: Biology, Physiology, Physics. Springer, Berlin Heidelberg, (1995) 103–121.
  • [13] Gonzalez D.G., van Dijk J.D.P., Blank L.E.C.M., Rümke P., Combined Treatment With Radiation And Hyperthermia Inmetastatic Malignant Melanoma, Radiother. Oncol., 6(2) (1986) 105–113.
  • [14] Kim J. H., Hahn E. Tokita W., N., Nisce L. Z., Local Tumor Hyperthermia in Combination with Radiation Therapy. 1. Malignant Cutaneous Lesions, Cancer, 40(1) (1977) 161–169.
  • [15] Coleman A., Augustine C. K., Beasley G., Sanders G., Tyler D., Optimizing Regional Infusion Treatment Strategies for Melanoma of the Extremities, Expert Rev. Anticancer Ther.,9(11) (2009) 1599–1609.
  • [16] Kamarudin S., Taib I., Adnan M., Nasir F., et al., Prediction of Heat Distribution on Brain Malignant Tumor Using Hyperthermia Therapy, AIP Conf. Proc., 2955(1) (2023). 20031.
  • [17] Haar L., Gallagher J.S., Kell G.S., NBS/NRC steam tables: thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Washington (DC) Hemisphere, (1984).
  • [18] Marsh K.N., Recommended reference materials for the realization of physicochemical properties. Blackwell Scientific Publications, (1987).
  • [19] Sengers J.V., Watson J.T.R., Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance, J. Phys. Chem. Ref. Data, 15(4) (1986) 1291–1314.
  • [20] Archer D.G., Wang P., The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes, J. Phys. Chem. Ref. Data, 19(2) (1990) 371–411.
  • [21] Vargaftik N. B., Volkov B. N., Voljak L. D., International Tables of the Surface Tension of Water, J. Phys. Chem. Ref. Data,12(3) (1983) 817–820.
  • [22] Dabagh M. Randles A., Role of Deformable Cancer Cells on Wall Shear Stress-Associated-VEGF Secretion by Endothelium in Microvasculature, PLoS One, 14(2) (2019) e0211418.
  • [23] Basson M.D., Zeng B., Downey C., Sirivelu M.P., Tepe J.J., Increased Extracellular Pressure Stimulates Tumor Proliferation by A Mechanosensitive Calcium Channel and PKC-β, Mol. Oncol., 9(2) (2015) 513–526.
  • [24] Ingber D.E., Can Cancer Be Reversed by Engineering the Tumor Microenvironment?, Semin. Cancer Biol.,18(5) (2008) 356–364.
  • [25] Gutmann R., Leunig M., Feyh J., Goeat A.E., et al., Interstitial Hypertension in Head and Neck Tumors in Patients: Correlation with Tumor Size, Cancer Res.,52(7) (1992) 1993–1995.
  • [26] Raju B., Haug S. R., Ibrahim S. O., Heyeraas K. J., High Interstitial Fluid Pressure in Rat Tongue Cancer is Related to Increased Lymph Vessel Area, Tumor Size, Invasiveness and Decreased Body Weight, J. Oral Pathol. Med., 37(3) (2008) 137–144
Year 2024, Volume: 45 Issue: 4, 750 - 755, 30.12.2024
https://doi.org/10.17776/csj.1534439

Abstract

References

  • [1] Ferlay J., Ervik M., Lam F., Colombet M., Mery L., Pineros M., Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer. https://gco.iarc.fr/today. Retrieved July, 2024.
  • [2] Gong F., Liu J., Yang J., Qin J., et al., Effective Thermal Transport Properties in Multiphase Biological Systems Containing Carbon Nanomaterials, RSC Adv., 7(22) (2017) 13615–13622.
  • [3] Cherukula K., Manickavasagam Lekshmi K., Uthaman S., Cho K., Cho C-S., Park I-K., Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging, Nanomater, 6(4) (2016) 76.
  • [4] Yang K., Feng L., and Liu Z., Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy, Adv. Drug Deliv. Rev., 105 (2016) 228–241.
  • [5] Cherukuri P., Glazer E.S., Curley S.A., Targeted hyperthermia using metal nanoparticles, Adv. Drug Deliv. Rev., 62(3) (2010) 339–345.
  • [6] Manthe R. L., Foy S. P., Krishnamurthy N., Sharma B., Labhasetwar V., Tumor Ablation and Nanotechnology, Mol. Pharm., 7(6) (2010) 1880–1898.
  • [7] Lal S., Clare S.E., Halas NJ., Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact, Acc. Chem. Res., 41(12) (2008) 1842–1851.
  • [8] Robinson J.T., Tabakman S.M., Liang Y., Wang H., et al., Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance For Photothermal Therapy, J. Am. Chem. Soc., 133(17) (2011) 6825–6831.
  • [9] Liu H., Chen D., Li L., Liu T., et al., Multifunctional Gold Nanoshells On Silica Nanorattles: A Platform for the Combination Of Photothermal Therapy And Chemotherapy With Low Systemic Toxicity, Angew. Chem. Int. Ed. Engl., 50(4) (2011) 891–895.
  • [10] Cheng L., Yang K., Chen Q., Liu Z., Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer, ACS Nano, 6(6) (2012) 5605–5613.
  • [11] van der Zee J., Heating the Patient: A Promising Approach?, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol., 13(8) (2002) 1173–1184.
  • [12] Dahl O., Interaction of Heat and Drugs in Vitro and in Vivo. In: Seegenschmiedt M.H., Fessenden P., Vernon C.C., (Eds.). Thermoradiotherapy and Thermochemotherapy: Biology, Physiology, Physics. Springer, Berlin Heidelberg, (1995) 103–121.
  • [13] Gonzalez D.G., van Dijk J.D.P., Blank L.E.C.M., Rümke P., Combined Treatment With Radiation And Hyperthermia Inmetastatic Malignant Melanoma, Radiother. Oncol., 6(2) (1986) 105–113.
  • [14] Kim J. H., Hahn E. Tokita W., N., Nisce L. Z., Local Tumor Hyperthermia in Combination with Radiation Therapy. 1. Malignant Cutaneous Lesions, Cancer, 40(1) (1977) 161–169.
  • [15] Coleman A., Augustine C. K., Beasley G., Sanders G., Tyler D., Optimizing Regional Infusion Treatment Strategies for Melanoma of the Extremities, Expert Rev. Anticancer Ther.,9(11) (2009) 1599–1609.
  • [16] Kamarudin S., Taib I., Adnan M., Nasir F., et al., Prediction of Heat Distribution on Brain Malignant Tumor Using Hyperthermia Therapy, AIP Conf. Proc., 2955(1) (2023). 20031.
  • [17] Haar L., Gallagher J.S., Kell G.S., NBS/NRC steam tables: thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Washington (DC) Hemisphere, (1984).
  • [18] Marsh K.N., Recommended reference materials for the realization of physicochemical properties. Blackwell Scientific Publications, (1987).
  • [19] Sengers J.V., Watson J.T.R., Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance, J. Phys. Chem. Ref. Data, 15(4) (1986) 1291–1314.
  • [20] Archer D.G., Wang P., The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes, J. Phys. Chem. Ref. Data, 19(2) (1990) 371–411.
  • [21] Vargaftik N. B., Volkov B. N., Voljak L. D., International Tables of the Surface Tension of Water, J. Phys. Chem. Ref. Data,12(3) (1983) 817–820.
  • [22] Dabagh M. Randles A., Role of Deformable Cancer Cells on Wall Shear Stress-Associated-VEGF Secretion by Endothelium in Microvasculature, PLoS One, 14(2) (2019) e0211418.
  • [23] Basson M.D., Zeng B., Downey C., Sirivelu M.P., Tepe J.J., Increased Extracellular Pressure Stimulates Tumor Proliferation by A Mechanosensitive Calcium Channel and PKC-β, Mol. Oncol., 9(2) (2015) 513–526.
  • [24] Ingber D.E., Can Cancer Be Reversed by Engineering the Tumor Microenvironment?, Semin. Cancer Biol.,18(5) (2008) 356–364.
  • [25] Gutmann R., Leunig M., Feyh J., Goeat A.E., et al., Interstitial Hypertension in Head and Neck Tumors in Patients: Correlation with Tumor Size, Cancer Res.,52(7) (1992) 1993–1995.
  • [26] Raju B., Haug S. R., Ibrahim S. O., Heyeraas K. J., High Interstitial Fluid Pressure in Rat Tongue Cancer is Related to Increased Lymph Vessel Area, Tumor Size, Invasiveness and Decreased Body Weight, J. Oral Pathol. Med., 37(3) (2008) 137–144
There are 26 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Natural Sciences
Authors

Mesude Avcı 0000-0001-8211-7779

Publication Date December 30, 2024
Submission Date August 16, 2024
Acceptance Date December 14, 2024
Published in Issue Year 2024Volume: 45 Issue: 4

Cite

APA Avcı, M. (2024). Modeling the Effect of Heat Distribution in Photothermal Therapy by Using Computational Fluid Dynamics (CFD). Cumhuriyet Science Journal, 45(4), 750-755. https://doi.org/10.17776/csj.1534439