[1] Wang F., Slivken S., Razeghi M., High-Brightness LWIR Quantum Cascade Lasers, Optics Letters, 46 (20) (2021) 5193-5196.
[2] Harrer A., Schwarz B., Schuler S., Reininger P., Wirthmüller A., Detz H., MacFarland D., Zederbauer T., Andrews A. M., Rothermund M., Oppermann H., Schrenk W., Strasser G., 4.3 μm Quantum Cascade Detector in Pixel Configuration, Optics Express, 24 (15) (2016) 17041-17049.
[3] Vitiello M. S., Scalari G., Williams B., De Natale P., Quantum Cascade Lasers: 20 Years of Challenges, Optics Express, 23 (4) (2015) 5167-5182
[4] Hanna S., Eich D., Mahlein K. M., Fick W., Schirmacher W., Thöt R., Wendler J., Figgemeier H., MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM, Journal
of Electronic Materials, 45 (9) (2016) 4542-4551.
[5] Alaydin B. O., Ozturk E., Elagoz S., Interband Transitions Dependent on Indium Concentration in Ga1−xInxAs/GaAs Asymmetric Triple Quantum Wells, International Journal of Modern Physics B, 32 (05) (2017) 1850052.
[6] Hao Q., Zhao X., Tang X., Chen M., The Historical Development of Infrared Photodetection Based on Intraband Transitions, Materials, 16 (2023) 1562.
[7] Jiang M., Xiao H. Y., Peng S. M., Yang G. X., Liu Z. J., Zu X. T., A Comparative Study of Low Energy Radiation Response of AlAs, GaAs and GaAs/AlAs Superlattice and The Damage Effects on Their Electronic Structures, Scientific Reports, 8 (1) (2018) 2012.
[8] Karabulut İ., Atav Ü., Şafak H., Tomak M., Second Harmonic Generation in an Asymmetric Rectangular Quantum Well Under Hydrostatic Pressure, Physica B: Condensed Matter, 393 (1) (2007) 133-138.
[9] Karki H. D., Elagoz S., Baser P., The High Hydrostatic Pressure Effect on Shallow Donor Binding Energies in GaAs–(Ga, Al)As Cylindrical Quantum Well Wires at Selected Temperatures, Physica B: Condensed Matter, 406 (11) (2011) 2116-2120.
[10] Ozturk E., Depending on The Electric and Magnetic Field of The Linear Optical Absorption and Rectification Coefficient in Triple Quantum Well, Optical and Quantum Electronics, 49 (8) (2017) 270.
[11] Alaydin B. O., Effect of High Bandgap AlAs Quantum Barrier on Electronic and Optical Properties of In0.70Ga0.30As/Al0.60In0.40As Superlattice Under Applied Electric Field for Laser and Detector Applications, International Journal of Modern Physics B, 35 (02) (2021) 2150027.
[12] Durmuslar A. S., Billur C. A., Turkoglu A., Ungan F., Optical Properties of a GaAs Quantum Well with a New Type of Hyperbolic Confinement Potential: Effect of Structure Parameters and Intense Laser Field, Optics Communications, 499 (2021) 127266.
[13] Öztürk E., Sökmen İ., Resonant Peaks of The Linear Optical Absorption and Rectification Coefficients in GaAs/GaAlAs Quantum Well: Combined Effects of Intense Laser, Electric and Magnetic Fields, International Journal of Modern Physics B, 29 (05) (2015) 1550030.
[14] Karabulut I., Laser Field Effect on The Nonlinear Optical Properties of a Square Quantum Well Under the Applied Electric Field, Applied Surface Science, 256 (24) (2010) 7570-7574.
[15] Yıldırım H., Tomak M., Nonlinear Optical Properties of a Pöschl-Teller Quantum Well, Physical Review B, 72(11) (2005) 115340.
[16] Öztürk E., The Effects of Hydrostatic Pressure on The Nonlinear Intersubband Transitions and Refractive Index Changes of Different QW Shapes, Optics Communications, 285 (24) (2012) 5223-5228.
[17] Alaydin B. O., Optical Properties of GaAs/Alxga1-xas Superlattice Under E-Field for Quantum Cascade Laser Application, Gazi University Journal of Science, 1: (2021) 1.
[18] Altun D., Ozturk O., Alaydin B.O., Ozturk E., Linear and Nonlinear Optical Properties of a Superlattice with Periodically Increased Well Width Under Electric and Magnetic Fields, Micro and Nanostructures, 166 (2022) 207225.
[19] Alaydin B.O., Altun D., Ozturk O., Ozturk E., High Harmonic Generations Triggered by The Intense Laser Field in GaAs/AlxGa1-xAs Honeycomb Quantum Well Wires, Materials Today Physics, 38 (2023) 101232.
[20] Bai Y., Bandyopadhyay N., Tsao S., Selcuk E., Slivken S., Razeghi M., Highly Temperature Insensitive Quantum Cascade Lasers, Appl. Phys. Lett., 97 (2010) 251104.
[21] Alaydin B.O., Effect of High Bandgap AlAs Quantum Barrier on Electronic and Optical Properties of In0.70Ga0.30As/Al0.60In0.40As Superlattice Under Applied Electric Field for Laser and Detector Applications, International Journal of Modern Physics B, 35 (02) (2021) 2150027.
[22] Niculescu E. C., Eseanu N., Radu A., Heterointerface Effects on The Nonlinear Optical Rectification in a Laser-Dressed Graded Quantum Well, Optics Communications, 294 (2013) 276-282.
[23] Ghosh P., A., Mandal A., Sarkar S., Ghosh M., Influence of Position-Dependent Effective Mass on The Nonlinear Optical Properties of Impurity Doped Quantum Dots in Presence of Gaussian White Noise, Optics Communications, 367 (2016) 325-334.
A Study on The Optical Properties of Long-Infrared Intraband Transitions of Quadruple Gaas/Alxga1-Xas Quantum Well Under Applied Electric Field
Year 2023,
Volume: 44 Issue: 4, 793 - 798, 28.12.2023
Semiconductor-emitting/absorbing infrared devices are in the common interest of the scientific and industrial community due to their broad application in these fields. GaAs/AlGaAs based devices are one of the most studied semiconductor heterostructures. In this study, I have aimed to design GaAs/AlGaAs quantum well (QW) semiconductor heterostructures to emit/absorb in the long infrared region and studied the optical properties. To do that, I have designed a quadruple QW, which is composed of GaAs/Al0.44Ga0.56As QW and quantum barriers (QB). I have solved the time-independent Schrödinger equation using the finite element method-based matlab code under effective mass approximation. The wave functions and corresponding energy eigenvalues are obtained for varied electric field (EF) intensities. I have shown that our design can operate up to 80 kV/cm, which is the limit for first bounded energy eigenstates. It is observed that E_32 transition provides long-infrared emission/absorption corresponding to the 0.12-0.14 eV transition energy and it is constant with increased EF intensity. In addition, it is seen that the overlap of the wave functions is increasing with EF intensity which enhances radiative transition in the structure. I have calculated the linear absorption coefficient and refractive index change. I have observed that the absorption coefficient of E_32 transition is increasing with EF intensity while E_31 is decreasing and E_21 is constant. As a last, I have shown that EF intensity has a minor effect on refractive index change.
[1] Wang F., Slivken S., Razeghi M., High-Brightness LWIR Quantum Cascade Lasers, Optics Letters, 46 (20) (2021) 5193-5196.
[2] Harrer A., Schwarz B., Schuler S., Reininger P., Wirthmüller A., Detz H., MacFarland D., Zederbauer T., Andrews A. M., Rothermund M., Oppermann H., Schrenk W., Strasser G., 4.3 μm Quantum Cascade Detector in Pixel Configuration, Optics Express, 24 (15) (2016) 17041-17049.
[3] Vitiello M. S., Scalari G., Williams B., De Natale P., Quantum Cascade Lasers: 20 Years of Challenges, Optics Express, 23 (4) (2015) 5167-5182
[4] Hanna S., Eich D., Mahlein K. M., Fick W., Schirmacher W., Thöt R., Wendler J., Figgemeier H., MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM, Journal
of Electronic Materials, 45 (9) (2016) 4542-4551.
[5] Alaydin B. O., Ozturk E., Elagoz S., Interband Transitions Dependent on Indium Concentration in Ga1−xInxAs/GaAs Asymmetric Triple Quantum Wells, International Journal of Modern Physics B, 32 (05) (2017) 1850052.
[6] Hao Q., Zhao X., Tang X., Chen M., The Historical Development of Infrared Photodetection Based on Intraband Transitions, Materials, 16 (2023) 1562.
[7] Jiang M., Xiao H. Y., Peng S. M., Yang G. X., Liu Z. J., Zu X. T., A Comparative Study of Low Energy Radiation Response of AlAs, GaAs and GaAs/AlAs Superlattice and The Damage Effects on Their Electronic Structures, Scientific Reports, 8 (1) (2018) 2012.
[8] Karabulut İ., Atav Ü., Şafak H., Tomak M., Second Harmonic Generation in an Asymmetric Rectangular Quantum Well Under Hydrostatic Pressure, Physica B: Condensed Matter, 393 (1) (2007) 133-138.
[9] Karki H. D., Elagoz S., Baser P., The High Hydrostatic Pressure Effect on Shallow Donor Binding Energies in GaAs–(Ga, Al)As Cylindrical Quantum Well Wires at Selected Temperatures, Physica B: Condensed Matter, 406 (11) (2011) 2116-2120.
[10] Ozturk E., Depending on The Electric and Magnetic Field of The Linear Optical Absorption and Rectification Coefficient in Triple Quantum Well, Optical and Quantum Electronics, 49 (8) (2017) 270.
[11] Alaydin B. O., Effect of High Bandgap AlAs Quantum Barrier on Electronic and Optical Properties of In0.70Ga0.30As/Al0.60In0.40As Superlattice Under Applied Electric Field for Laser and Detector Applications, International Journal of Modern Physics B, 35 (02) (2021) 2150027.
[12] Durmuslar A. S., Billur C. A., Turkoglu A., Ungan F., Optical Properties of a GaAs Quantum Well with a New Type of Hyperbolic Confinement Potential: Effect of Structure Parameters and Intense Laser Field, Optics Communications, 499 (2021) 127266.
[13] Öztürk E., Sökmen İ., Resonant Peaks of The Linear Optical Absorption and Rectification Coefficients in GaAs/GaAlAs Quantum Well: Combined Effects of Intense Laser, Electric and Magnetic Fields, International Journal of Modern Physics B, 29 (05) (2015) 1550030.
[14] Karabulut I., Laser Field Effect on The Nonlinear Optical Properties of a Square Quantum Well Under the Applied Electric Field, Applied Surface Science, 256 (24) (2010) 7570-7574.
[15] Yıldırım H., Tomak M., Nonlinear Optical Properties of a Pöschl-Teller Quantum Well, Physical Review B, 72(11) (2005) 115340.
[16] Öztürk E., The Effects of Hydrostatic Pressure on The Nonlinear Intersubband Transitions and Refractive Index Changes of Different QW Shapes, Optics Communications, 285 (24) (2012) 5223-5228.
[17] Alaydin B. O., Optical Properties of GaAs/Alxga1-xas Superlattice Under E-Field for Quantum Cascade Laser Application, Gazi University Journal of Science, 1: (2021) 1.
[18] Altun D., Ozturk O., Alaydin B.O., Ozturk E., Linear and Nonlinear Optical Properties of a Superlattice with Periodically Increased Well Width Under Electric and Magnetic Fields, Micro and Nanostructures, 166 (2022) 207225.
[19] Alaydin B.O., Altun D., Ozturk O., Ozturk E., High Harmonic Generations Triggered by The Intense Laser Field in GaAs/AlxGa1-xAs Honeycomb Quantum Well Wires, Materials Today Physics, 38 (2023) 101232.
[20] Bai Y., Bandyopadhyay N., Tsao S., Selcuk E., Slivken S., Razeghi M., Highly Temperature Insensitive Quantum Cascade Lasers, Appl. Phys. Lett., 97 (2010) 251104.
[21] Alaydin B.O., Effect of High Bandgap AlAs Quantum Barrier on Electronic and Optical Properties of In0.70Ga0.30As/Al0.60In0.40As Superlattice Under Applied Electric Field for Laser and Detector Applications, International Journal of Modern Physics B, 35 (02) (2021) 2150027.
[22] Niculescu E. C., Eseanu N., Radu A., Heterointerface Effects on The Nonlinear Optical Rectification in a Laser-Dressed Graded Quantum Well, Optics Communications, 294 (2013) 276-282.
[23] Ghosh P., A., Mandal A., Sarkar S., Ghosh M., Influence of Position-Dependent Effective Mass on The Nonlinear Optical Properties of Impurity Doped Quantum Dots in Presence of Gaussian White Noise, Optics Communications, 367 (2016) 325-334.
There are 23 citations in total.
Details
Primary Language
English
Subjects
Photonics, Optoelectronics and Optical Communications
Altun, D. (2023). A Study on The Optical Properties of Long-Infrared Intraband Transitions of Quadruple Gaas/Alxga1-Xas Quantum Well Under Applied Electric Field. Cumhuriyet Science Journal, 44(4), 793-798. https://doi.org/10.17776/csj.1349975