Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 1, 99 - 105, 26.03.2023
https://doi.org/10.17776/csj.1191282

Abstract

References

  • [1] WHO (2022). “Cancer”. (Accessed: 10.03.2022) Available from:https://www.who.int/news-room/factsheets/detail/cancer#:~:text=Cancer%20is%20a%20leading%20cause,and%20rectum%20and%20prostate%20cancers.
  • [2] Borzecka W., Dominski A., Kowalczuk M., Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy, Nanomaterials (Basel), 11(9) (2021) 2426-2458.
  • [3] Baykara O., Current Therapies and Latest Developments in Cancer Treatment, in Horizons in Cancer Research, Watanabe H. S., Editor., Nova Science Publishers, 57 (2015) 105-157.
  • [4] Monje M., Dietrich J., Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis, Behav. Brain. Res., 227(2) (2012) 376-379.
  • [5] De Annunzio S.R., Costa N.C.S., Mezzina R.D., Graminha M. A. S., Fontana C.R., Chlorin, Phthalocyanine, and Porphyrin Types Derivatives in Phototreatment of Cutaneous Manifestations: A Review, Int. J. Mol. Sci, 20(16) (2019) 3861-3882.
  • [6] Hong E.J., Choi D.G., Shim M.S., Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials, Acta Pharm. Sin. B, 6(4) (2016) 297-307.
  • [7] Wang X., Luo D., Basilion J.P., Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers, Cancers (Basel), 13(12) (2021) 2992-3010.
  • [8] Xu Y., Tan Y., Ma X., Jin X., Tian Y., Li M., Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer, Molecules, 26(19) (2021) 5990-6012.
  • [9] Lin L., Xiong L ., Wen Y ., Lei S., Deng X., Liu Z., Chen W., Miao X., Active Targeting of Nano-Photosensitizer Delivery Systems for Photodynamic Therapy of Cancer Stem Cells, J. Biomed. Nanotechnol., 11(4) (2015) 531-554.
  • [10] Liu D., Cancer biomarkers for targeted therapy, Biomark. Res., 7 (2019) 25-31.
  • [11] Yoon I., Li J.Z., Shim Y.K., Advance in photosensitizers and light delivery for photodynamic therapy, Clin. Endosc., 46(1) (2013) 7-23.
  • [12] Allison R.R., Sibata C.H., Oncologic photodynamic therapy photosensitizers: a clinical review, Photodiagnosis Photodyn. Ther., 7(2) (2010) 61-75.
  • [13] Chen Q., Dan H., Tang F., Wang J., Li X., Cheng J., Zhao H., Zeng X., Photodynamic therapy guidelines for the management of oral leucoplakia, Int. J. Oral. Sci., 11(2) (2019) 14-18.
  • [14] Lightdale C.J., Role of Photodynamic Therapy in the Management of Advanced Esophageal Cancer, Gastrointestinal Endoscopy Clinics of North America, 10(3) (2000) 397-408.
  • [15] Schweitzer V.G., Photofrin-mediated photodynamic therapy for treatment of early stage oral cavity and laryngeal malignancies, Lasers Surg. Med., 29(4) (2001) 305-313.
  • [16] Ormond A.B., Freeman H.S., Dye Sensitizers for Photodynamic Therapy, Materials (Basel), 6(3) (2013) 817-840.
  • [17] Lo P.C., Rodríguez-Morgade M. S., Pandey R. K., Ng D.K. P., Torres T ., Dumoulin F., The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer, Chem. Soc. Rev., 49(4) (2020) 1041-1056.
  • [18] Ben-Hur E., Rosenthal I., The phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy, Int. J. Radi. Biol. Rel. Stu. Phys., Chem.Med., 47(2) (1985) 145-147.
  • [19] Mehraban N., Freeman H.S., Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production, Materials (Basel), 8(7) (2015) 4421-4456.
  • [20] Bian Y., Chen J., Xu S., Zhou Y., Zhu L., Xiang Y., Xia D., The effect of a hydrogen bond on the supramolecular self-aggregation mode and the extent of metal-free benzoxazole-substituted phthalocyanines, New J. Chem., 39(7) (2015) 5750-5758.
  • [21] de la Escosura A., Martı´nez-Dı´az M. V., Thordarson P., Rowan A. E., Nolte R.J.M., Torres T., Donor-Acceptor Phthalocyanine Nanoaggregates, J. Am. Chem. Soc., 125(40) (2003) 12300-12308.
  • [22] Ma D., Ma D., Chen X., Wang Y., Guo Q., Ye Q., Guo R., Xiao S., Ye Q., Huang Y., Peng Y., Benzyl ester dendrimer silicon phthalocyanine based polymeric nanoparticle for in vitro photodynamic therapy of glioma, J. Lumin., 207 (2019) 597-601.
  • [23] Makhseed S., Machacek M., Alfadly W., Tuhl A., Vinodh M., Simunek T., Novakova V., Kubat P., Rudolf E., Zimcik P., Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy, Chem. Commun., 49(95) (2013) 11149-11151.
  • [24] Idowu M., Nyokong T., Photophysical and photochemical properties of zinc and aluminum phthalocyanines in the presence of magnetic fluid, J. Photochem. Photobiol. A, 188(2) (2007) 200-206.
  • [25] Carobeli L.R., Meirelles L.E.F., Damke G., Damke E., Souza M.V.F., Mari N.L., Mashiba K.H., Shinobu-Mesquita C.S., Souza R.P., da Silva V.R.S., Gonçalves R.S., Caetano W., Consolaro M.E.L., Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy, Pharmaceutics, 13(12) (2021) 2057-2084.
  • [26] Ubuka T., 131D Serotonin. In: Ando H, Ukena K, Nagata S, editors. Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research, 2nd Ed. Academic Press; (2021) 1049.
  • [27] Hernandez-Mendoza G.A., Aguirre-Olivas D., Gonzalez-Gutierrez M., Leal H.J., Qureshi N., Trevino-Palacios C.G., Peón J., De-Miguel F.F., Fluorescence of serotonin in the visible spectrum upon multiphotonic photoconversion, Biomed. Opt. Express.,11(3) (2020) 1432-1448.
  • [28] Armarego W.L.F., Chai C.L.L., Purification of Laboratory Chemicals, 5 third ed., Tokyo: Butterworth/Heinemann, (2003).
  • [29] Young J.G., Onyebuagu W., Synthesis and Characterization of Di-disubstituted Phthalocyanines, J. Org. Chem., 55 (1990) 2156-2158.
  • [30] Granados-Tavera K., Zambrano-Angulo M., Montenegro-Pohlhammer N., Yaşa-Atmaca G., Sobotta L., Güzel E., C´ardenas-Jir´on G., Erdoğmuş A., Gürek A. G., Synergistic effect of ultrasound and light to efficient singlet oxygen formation for photodynamic purposes, Dye Pigments, 210 (2023) 110986-110995.
  • [31] Yabaş E., Bağda E, Bağda E., The water soluble ball-type phthalocyanine as new potential anticancer drugs, Dyes Pigment., 120 (2015) 220-227.
  • [32] Yabaş E., Sülü M., Saydam S., Dumludağ F., Salih B., Bekaroğlu Ö., Synthesis, characterization and investigation of electrical and electrochemical properties of imidazole substituted phthalocyanines, Inorg. Chem. Acta, 365 (2011) 340-348.
  • [33] Günsel A., Kırbaç E., Tüzün B., Erdoğmuş A., Bilgiçli, A. T., Yaraşır M. N., Selective chemosensor phthalocyanines for Pd2+ ions; synthesis, characterization, quantum chemical calculation, photochemical and photophysical properties, J. Mol. Struct., 1180 (2019) 127-138.
  • [34] Mısır M. N., Mısır G., Bekircan O., Kantekin H., Öztürk D., Durmuş M., Sulfur bridged new metal-free and metallo phthalocyanines carrying 1,2,4-triazole rings and their photophysicochemical properties, Polyhedron, 207 (2021) 115361-115369.
  • [35] Nagaraja D., Melavanki R.M., Patil N.R., Kusanur R.A., Solvent effect on the relative quantum yield and fluorescence quenching of 2DAM, Spectrochim. Acta Part A, 130 (2014) 122-128.
  • [36] Zou J., Yin Z., Wang P., Chen D., Shao J., Zhang Q., Sun L., Huang W., Dong X., Photosensitizer synergistic effects: D–A–D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy, Chem. Sci., 9 (2018) 2188-2194.
  • [37] Huang Y-Q., Liu K-L., Ni H-L., Zhang R., Liu X-F., Fan Q-L., Wang L-H., Huang W., Organic Theranostic Nanoplatform with Enhanced Fluorescence and Singlet Oxygen Quantum Yield for Tumor-Targeting Image-Guided Photodynamic/Photothermal Synergistic Therapy, ACS Appl. Polym. Mater., 4 (2022) 7739-7750.
  • [38] Mai D.K., Kim C., Lee J., Vales T.P., Badon I.W., De K., Cho S., Yang J., Kim H-J., BODIPY nanoparticles functionalized with lactose for cancer‐targeted and fluorescence imaging‐guided photodynamic therapy, Sci. Rep., 12 (2022) 2541.
  • [39] Bindhu C. V., Harilal S. S., Nampoori V. P. N., Vallabhan C. P. G., Solvent Effect On Absolute Fluorescence Quantum Yield Of Rhodamine 6g Determined Using Transient Thermal Lens Technique, Modern Physics. Letters B, 13 (1999) 563-576.
  • [40] Ogunsipe A., Maree D., Nyokong T., Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives, J Mol. Struct., 650 (2003) 131-140.

Water-Soluble Quaternized Serotonin Substituted Zinc-Phthalocyanine for Photodynamic Therapy Applications

Year 2023, Volume: 44 Issue: 1, 99 - 105, 26.03.2023
https://doi.org/10.17776/csj.1191282

Abstract

Poor water solubility is the main drawback of phthalocyanine (Pc)-based second generation photosensitizing agents in photodynamic therapy (PDT). To resolve this, we proposed preparation of quaternized serotonin substituted zinc phthalocyanine (q-Ser-ZnPc) since the positive charge on quaternary amines could improve water-solubility and might limit self-interactions of hydrophobic aromatic surface of Pc in aqueous solutions. Briefly, serotonin substituted phthalonitrile was prepared by reaction of 4-nitrophthalonitrile with 5-hydroxytryptamine (Serotonin). Serotonin substituted zinc(II) phthalocyanine (Ser-ZnPc) was prepared by cyclotetramerization of serotonin substituted phthalonitrile. Then, q-Ser-ZnPc was prepared by the quaternization reaction of Ser-ZnPc. The synthesized compounds were characterized by 1H-NMR, UV-Vis, FT-IR, fluorescence, and elemental analysis. Importantly, unlike ZnPc, which is among most widely used second generation photosensitizing agents, we report that q-Ser-ZnPc is actually water-soluble. Besides, q-Ser-ZnPc also absorbs light in the wavelengths corresponding to the therapeutic window. What’s more, q-Ser-ZnPc exhibits a higher fluorescence quantum yield than that of ZnPc. Thus, the material might be useful particularly for image-guided PDT applications.

References

  • [1] WHO (2022). “Cancer”. (Accessed: 10.03.2022) Available from:https://www.who.int/news-room/factsheets/detail/cancer#:~:text=Cancer%20is%20a%20leading%20cause,and%20rectum%20and%20prostate%20cancers.
  • [2] Borzecka W., Dominski A., Kowalczuk M., Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy, Nanomaterials (Basel), 11(9) (2021) 2426-2458.
  • [3] Baykara O., Current Therapies and Latest Developments in Cancer Treatment, in Horizons in Cancer Research, Watanabe H. S., Editor., Nova Science Publishers, 57 (2015) 105-157.
  • [4] Monje M., Dietrich J., Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis, Behav. Brain. Res., 227(2) (2012) 376-379.
  • [5] De Annunzio S.R., Costa N.C.S., Mezzina R.D., Graminha M. A. S., Fontana C.R., Chlorin, Phthalocyanine, and Porphyrin Types Derivatives in Phototreatment of Cutaneous Manifestations: A Review, Int. J. Mol. Sci, 20(16) (2019) 3861-3882.
  • [6] Hong E.J., Choi D.G., Shim M.S., Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials, Acta Pharm. Sin. B, 6(4) (2016) 297-307.
  • [7] Wang X., Luo D., Basilion J.P., Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers, Cancers (Basel), 13(12) (2021) 2992-3010.
  • [8] Xu Y., Tan Y., Ma X., Jin X., Tian Y., Li M., Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer, Molecules, 26(19) (2021) 5990-6012.
  • [9] Lin L., Xiong L ., Wen Y ., Lei S., Deng X., Liu Z., Chen W., Miao X., Active Targeting of Nano-Photosensitizer Delivery Systems for Photodynamic Therapy of Cancer Stem Cells, J. Biomed. Nanotechnol., 11(4) (2015) 531-554.
  • [10] Liu D., Cancer biomarkers for targeted therapy, Biomark. Res., 7 (2019) 25-31.
  • [11] Yoon I., Li J.Z., Shim Y.K., Advance in photosensitizers and light delivery for photodynamic therapy, Clin. Endosc., 46(1) (2013) 7-23.
  • [12] Allison R.R., Sibata C.H., Oncologic photodynamic therapy photosensitizers: a clinical review, Photodiagnosis Photodyn. Ther., 7(2) (2010) 61-75.
  • [13] Chen Q., Dan H., Tang F., Wang J., Li X., Cheng J., Zhao H., Zeng X., Photodynamic therapy guidelines for the management of oral leucoplakia, Int. J. Oral. Sci., 11(2) (2019) 14-18.
  • [14] Lightdale C.J., Role of Photodynamic Therapy in the Management of Advanced Esophageal Cancer, Gastrointestinal Endoscopy Clinics of North America, 10(3) (2000) 397-408.
  • [15] Schweitzer V.G., Photofrin-mediated photodynamic therapy for treatment of early stage oral cavity and laryngeal malignancies, Lasers Surg. Med., 29(4) (2001) 305-313.
  • [16] Ormond A.B., Freeman H.S., Dye Sensitizers for Photodynamic Therapy, Materials (Basel), 6(3) (2013) 817-840.
  • [17] Lo P.C., Rodríguez-Morgade M. S., Pandey R. K., Ng D.K. P., Torres T ., Dumoulin F., The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer, Chem. Soc. Rev., 49(4) (2020) 1041-1056.
  • [18] Ben-Hur E., Rosenthal I., The phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy, Int. J. Radi. Biol. Rel. Stu. Phys., Chem.Med., 47(2) (1985) 145-147.
  • [19] Mehraban N., Freeman H.S., Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production, Materials (Basel), 8(7) (2015) 4421-4456.
  • [20] Bian Y., Chen J., Xu S., Zhou Y., Zhu L., Xiang Y., Xia D., The effect of a hydrogen bond on the supramolecular self-aggregation mode and the extent of metal-free benzoxazole-substituted phthalocyanines, New J. Chem., 39(7) (2015) 5750-5758.
  • [21] de la Escosura A., Martı´nez-Dı´az M. V., Thordarson P., Rowan A. E., Nolte R.J.M., Torres T., Donor-Acceptor Phthalocyanine Nanoaggregates, J. Am. Chem. Soc., 125(40) (2003) 12300-12308.
  • [22] Ma D., Ma D., Chen X., Wang Y., Guo Q., Ye Q., Guo R., Xiao S., Ye Q., Huang Y., Peng Y., Benzyl ester dendrimer silicon phthalocyanine based polymeric nanoparticle for in vitro photodynamic therapy of glioma, J. Lumin., 207 (2019) 597-601.
  • [23] Makhseed S., Machacek M., Alfadly W., Tuhl A., Vinodh M., Simunek T., Novakova V., Kubat P., Rudolf E., Zimcik P., Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy, Chem. Commun., 49(95) (2013) 11149-11151.
  • [24] Idowu M., Nyokong T., Photophysical and photochemical properties of zinc and aluminum phthalocyanines in the presence of magnetic fluid, J. Photochem. Photobiol. A, 188(2) (2007) 200-206.
  • [25] Carobeli L.R., Meirelles L.E.F., Damke G., Damke E., Souza M.V.F., Mari N.L., Mashiba K.H., Shinobu-Mesquita C.S., Souza R.P., da Silva V.R.S., Gonçalves R.S., Caetano W., Consolaro M.E.L., Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy, Pharmaceutics, 13(12) (2021) 2057-2084.
  • [26] Ubuka T., 131D Serotonin. In: Ando H, Ukena K, Nagata S, editors. Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research, 2nd Ed. Academic Press; (2021) 1049.
  • [27] Hernandez-Mendoza G.A., Aguirre-Olivas D., Gonzalez-Gutierrez M., Leal H.J., Qureshi N., Trevino-Palacios C.G., Peón J., De-Miguel F.F., Fluorescence of serotonin in the visible spectrum upon multiphotonic photoconversion, Biomed. Opt. Express.,11(3) (2020) 1432-1448.
  • [28] Armarego W.L.F., Chai C.L.L., Purification of Laboratory Chemicals, 5 third ed., Tokyo: Butterworth/Heinemann, (2003).
  • [29] Young J.G., Onyebuagu W., Synthesis and Characterization of Di-disubstituted Phthalocyanines, J. Org. Chem., 55 (1990) 2156-2158.
  • [30] Granados-Tavera K., Zambrano-Angulo M., Montenegro-Pohlhammer N., Yaşa-Atmaca G., Sobotta L., Güzel E., C´ardenas-Jir´on G., Erdoğmuş A., Gürek A. G., Synergistic effect of ultrasound and light to efficient singlet oxygen formation for photodynamic purposes, Dye Pigments, 210 (2023) 110986-110995.
  • [31] Yabaş E., Bağda E, Bağda E., The water soluble ball-type phthalocyanine as new potential anticancer drugs, Dyes Pigment., 120 (2015) 220-227.
  • [32] Yabaş E., Sülü M., Saydam S., Dumludağ F., Salih B., Bekaroğlu Ö., Synthesis, characterization and investigation of electrical and electrochemical properties of imidazole substituted phthalocyanines, Inorg. Chem. Acta, 365 (2011) 340-348.
  • [33] Günsel A., Kırbaç E., Tüzün B., Erdoğmuş A., Bilgiçli, A. T., Yaraşır M. N., Selective chemosensor phthalocyanines for Pd2+ ions; synthesis, characterization, quantum chemical calculation, photochemical and photophysical properties, J. Mol. Struct., 1180 (2019) 127-138.
  • [34] Mısır M. N., Mısır G., Bekircan O., Kantekin H., Öztürk D., Durmuş M., Sulfur bridged new metal-free and metallo phthalocyanines carrying 1,2,4-triazole rings and their photophysicochemical properties, Polyhedron, 207 (2021) 115361-115369.
  • [35] Nagaraja D., Melavanki R.M., Patil N.R., Kusanur R.A., Solvent effect on the relative quantum yield and fluorescence quenching of 2DAM, Spectrochim. Acta Part A, 130 (2014) 122-128.
  • [36] Zou J., Yin Z., Wang P., Chen D., Shao J., Zhang Q., Sun L., Huang W., Dong X., Photosensitizer synergistic effects: D–A–D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy, Chem. Sci., 9 (2018) 2188-2194.
  • [37] Huang Y-Q., Liu K-L., Ni H-L., Zhang R., Liu X-F., Fan Q-L., Wang L-H., Huang W., Organic Theranostic Nanoplatform with Enhanced Fluorescence and Singlet Oxygen Quantum Yield for Tumor-Targeting Image-Guided Photodynamic/Photothermal Synergistic Therapy, ACS Appl. Polym. Mater., 4 (2022) 7739-7750.
  • [38] Mai D.K., Kim C., Lee J., Vales T.P., Badon I.W., De K., Cho S., Yang J., Kim H-J., BODIPY nanoparticles functionalized with lactose for cancer‐targeted and fluorescence imaging‐guided photodynamic therapy, Sci. Rep., 12 (2022) 2541.
  • [39] Bindhu C. V., Harilal S. S., Nampoori V. P. N., Vallabhan C. P. G., Solvent Effect On Absolute Fluorescence Quantum Yield Of Rhodamine 6g Determined Using Transient Thermal Lens Technique, Modern Physics. Letters B, 13 (1999) 563-576.
  • [40] Ogunsipe A., Maree D., Nyokong T., Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives, J Mol. Struct., 650 (2003) 131-140.
There are 40 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Ebru Yabaş 0000-0001-7163-3057

Fuat Erden 0000-0002-8261-4844

Publication Date March 26, 2023
Submission Date October 18, 2022
Acceptance Date March 9, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Yabaş, E., & Erden, F. (2023). Water-Soluble Quaternized Serotonin Substituted Zinc-Phthalocyanine for Photodynamic Therapy Applications. Cumhuriyet Science Journal, 44(1), 99-105. https://doi.org/10.17776/csj.1191282