Research Article
BibTex RIS Cite

Toxicity of Paraquat and Dicamba on Caenorhabditis Elegans LC50 Value

Year 2023, Volume: 44 Issue: 1, 7 - 12, 26.03.2023
https://doi.org/10.17776/csj.1150823

Abstract

Paraquat and dicamba are chemicals commonly used in agriculture for plant control. The US Environmental Protection Agency (EPA) has classified paraquat into a restricted use class for use only by practitioners, as it is highly toxic. In this study, the effects of different concentrations of paraquat and dicamba toxic substances on C. elegans were studied. In tests, C. elegans were directly exposed to different concentrations of paraquat and dicamba for 6h, 12h, 18h, 24h. In particular, it was determined at which paraquat and dicamba doses that half of the C. elegans individuals (LC50) died. In the analysis results, paraquat LC50 values were found as LC50 6h= LC50 6h= 7412 µM, LC50 12h= 459 µM, LC50 18h= 123 µM, LC50 24h= 61 µM. Similarly, dicamba LC50 values were found as LC50 6h= 14610 µM, LC50 12h= 1404 µM, LC50 18h= 906 µM, LC50 24h= 463 µM.

References

  • [1] Wesseling C., De Joode B.V.W., Ruepert C., León C., Monge P., Hermosillo H., Partanen L.J., Paraquat in developing countries. International Journal of Occupational and Environmental Health, 7 (4) (2001) 275-286.
  • [2] Cicchetti F., Drouin-Ouellet J., Gross R.E., Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models, Trends in Pharmacological Sciences, 30 (9) (2009) 475-483.
  • [3] Suntres Z.E., Role of antioxidants in paraquat toxicity, Toxicology, 180 (1) (2002) 65-77.
  • [4] Vicente J.A., Peixoto F., Lopes M.L., Madeira V.M., Differential sensitivities of plant and animal mitochondria to the herbicide paraquat, Journal of Biochemical and Molecular Toxicology, 15 (6) (2001) 322-330.
  • [5] Han J.F., Wang S.L., He X.Y., Liu C.Y., Hong J.Y., Effect of genetic variation on human cytochrome p450 reductase-mediated paraquat cytotoxicity, Toxicological Sciences, 91 (1) (2006) 42-48.
  • [6] Mohammadi-B.A., Ghazi-Khansari M., Alternative electron acceptors: proposed mechanism of paraquat mitochondrial toxicity, Environmental Toxicology and Pharmacology, 26 (1) (2008) 1-5.
  • [7] Figueiredo‐Fernandes A.M., Fontaínhas‐Fernandes A.A., Monteiro R.A., Reis‐Henriques M.A., Rocha E., (2006) Temperature and gender influences on the hepatic stroma (and associated pancreatic acini) of Nile tilapia, Oreochromis niloticus (Teleostei, Cichlidae): A stereological analysis by light microscopy, Journal of Morphology, 267 (2) (2006) 221-230.
  • [8] Beal M.F., Mitochondria take center stage in aging and neurodegeneration, Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 58 (4) (2005) 495-505.
  • [9] Banerjee R., Starkov A.A., Beal M.F., Thomas B., Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792 (7) (2009) 651-663.
  • [10] Palmeira C.M., Moreno A.J., Madeira V.M., Mitochondrial bioenergetics is affected by the herbicide paraquat, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1229 (2) (1995) 187-192.
  • [11] Costa L.G., Toxic effects of pesticides. Casarett and Doull’s toxicology, Tthe Basic Science of Poisons, 8 (2008) 883-930.
  • [12] Maroni M., Colosio C., Ferioli A., Fait A., Quaternary Ammonium Compounds, Toxicology, 143 (2000) 85-89.
  • [13] Lin H.M., Liu H.L., Yang M.C., Tsai T.H., Chou C.C., Chang C.F., Lin Y.R., Clinical features and outcome analysis of patients suffer from paraquat intoxication in central Taiwan, Journal of Emergency Medicine, 12 (4) (2010) 99-106.
  • [14] Oliveira R.J., Remiao F., Carmo H., Duarte J.A., Navarro A.S., Bastos M.L., Carvalho F., Paraquat exposure as an etiological factor of Parkinson's disease, Neurotoxicology, 27 (6) (2006) 1110-1122.
  • [15] Henchcliffe C., Beal M.F., Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis, Nature Clinical Practice Neurology, 4 (11) (2008) 600-609.
  • [16] Klein C., Schneider S.A., Lang A.E., Hereditary parkinsonism: Parkinson disease look‐alikes—An algorithm for clinicians to “PARK” genes and beyond. Movement disorders, Official Journal of the Movement Disorder Society, 24 (14) (2009) 2042-2058.
  • [17] Berry C., La Vecchia C., Nicotera P., Paraquat and Parkinson's disease, Cell Death & Differentiation, 17 (7) (2010) 1115-1125.
  • [18] Tomlin C.D.S., The pesticide manual: a world compendium. 12th Ed. British Crop Protection Council, Bracknel, 14 (2000) 502-504.
  • [19] Yang J., Wang X.Z., Hage D.S., Herman P.L., Weeks D.P., Analysis of dicamba degradation by Pseudomonas maltophilia using high-performance capillary electrophoresis, Analytical Biochemistry, 219 (1) (1994) 37-42.
  • [20] Kaushik G., Satya S., Naik S.N., Food processing a tool to pesticide residue dissipation–A review, Food Research International, 42 (1) (2009) 26-40.
  • [21] Fischer B.B., Pomati F., Eggen R.I., The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity, Science of the Total Environment, 449 (2013) 253-259.
  • [22] Woudneh M.B., Sekela M., Tuominen T., Gledhill M., Acidic herbicides in surface waters of lower Fraser valley, British Columbia, Canada, Journal of Chromatography A, 1139 (1) (2007) 121-129.
  • [23] Perocco P., Ancora G., Rani P., Valenti A.M., Mazzullo M., Colacci A., Grilli S., Evaluation of genotoxic effects of the herbicide dicamba using in vivo and in vitro test systems, Environmental and Molecular Mutagenesis, 15 (3) (1990) 131-135.
  • [24] González N.V., Soloneski S., Larramendy M.L., The chlorophenoxy herbicide dicamba and its commercial formulation banvel® induce genotoxicity and cytotoxicity in Chinese hamster ovary (CHO) cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 634 (1-2) (2007) 60-68.
  • [25] Piotrowska A., Syguda A., Wyrwas B., Chrzanowski Ł., Heipieper H.J., Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida, Chemosphere, 167 (2017) 114-119.
  • [26] Lehner B., Crombie C., Tischler J., Fortunato A., Fraser A.G., Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways, Nature Genetics, 38 (8) (2006) 896-903.
  • [27] Boyd W.A., Smith M.V., Freedman J.H., Caenorhabditis elegans as a model in developmental toxicology, In Developmental Toxicology, Humana Press, Totowa, NJ (2012) 15-24
  • [28] David H.E., Dawe A.S., de Pomerai D.I., Jones D., Candido E.P.M., Daniells C., Construction and evaluation of a transgenic hsp16‐GFP‐lacZ Caenorhabditis elegans strain for environmental monitoring, Environmental Toxicology and Chemistry: An International Journal, 22 (1) (2003) 111-118.
  • [29] Artal‐Sanz M., de Jong L., Tavernarakis N., Caenorhabditis elegans: a versatile platform for drug discovery, Biotechnology Journal: Healthcare Nutrition Technology, 1 (12) (2006) 1405-1418.
  • [30] Leung M.C., Williams P.L., Benedetto A., Au C., Helmcke K.J., Aschner M., Meyer J.N., Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology, Toxicological Sciences, 106 (1) (2008) 5-28.
  • [31] Baugh L.R., To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest, Genetics, 194 (3) (2013) 539-555.
  • [32] Helmcke K.J., Aschner M., Hormetic effect of methylmercury on Caenorhabditis elegans, Toxicology and Applied Pharmacology, 248 (2) (2010) 156-164.
  • [33] Chu K.W., Chow K.L., Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative, Aquatic Toxicology, 61 (1-2) (2002) 53-64.
  • [34] Menzel R., Rödel M., Kulas J., Steinberg C.E., CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans, Archives of Biochemistry and Biophysics, 438 (1) (2005) 93-102.
  • [35] Reichert K., Menzel R., Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray, Chemosphere, 61 (2) (2005) 229-237.
  • [36] Senchuk M.M., Dues D. J., Van Raamsdonk, J.M., Measuring oxidative stress in Caenorhabditis elegans: paraquat and juglone sensitivity assays, Bio-protocol, 7 (1) (2017) 2086-2086.
  • [37] Soloneski S., De Arcaute C.R., Larramendy M.L., Genotoxic effect of a binary mixture of dicamba-and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867)(Anura, Bufonidae) late-stage larvae. Environmental Science and Pollution Research, 23 (17) (2016) 17811-17821.
  • [38] Turner L.W., Defining the Developmental Toxicity of the Herbicide Dicamba Using the Zebrafish Model System. The Journal of Purdue Undergraduate Research, 9 (1) (2019) 30.
Year 2023, Volume: 44 Issue: 1, 7 - 12, 26.03.2023
https://doi.org/10.17776/csj.1150823

Abstract

References

  • [1] Wesseling C., De Joode B.V.W., Ruepert C., León C., Monge P., Hermosillo H., Partanen L.J., Paraquat in developing countries. International Journal of Occupational and Environmental Health, 7 (4) (2001) 275-286.
  • [2] Cicchetti F., Drouin-Ouellet J., Gross R.E., Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models, Trends in Pharmacological Sciences, 30 (9) (2009) 475-483.
  • [3] Suntres Z.E., Role of antioxidants in paraquat toxicity, Toxicology, 180 (1) (2002) 65-77.
  • [4] Vicente J.A., Peixoto F., Lopes M.L., Madeira V.M., Differential sensitivities of plant and animal mitochondria to the herbicide paraquat, Journal of Biochemical and Molecular Toxicology, 15 (6) (2001) 322-330.
  • [5] Han J.F., Wang S.L., He X.Y., Liu C.Y., Hong J.Y., Effect of genetic variation on human cytochrome p450 reductase-mediated paraquat cytotoxicity, Toxicological Sciences, 91 (1) (2006) 42-48.
  • [6] Mohammadi-B.A., Ghazi-Khansari M., Alternative electron acceptors: proposed mechanism of paraquat mitochondrial toxicity, Environmental Toxicology and Pharmacology, 26 (1) (2008) 1-5.
  • [7] Figueiredo‐Fernandes A.M., Fontaínhas‐Fernandes A.A., Monteiro R.A., Reis‐Henriques M.A., Rocha E., (2006) Temperature and gender influences on the hepatic stroma (and associated pancreatic acini) of Nile tilapia, Oreochromis niloticus (Teleostei, Cichlidae): A stereological analysis by light microscopy, Journal of Morphology, 267 (2) (2006) 221-230.
  • [8] Beal M.F., Mitochondria take center stage in aging and neurodegeneration, Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 58 (4) (2005) 495-505.
  • [9] Banerjee R., Starkov A.A., Beal M.F., Thomas B., Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792 (7) (2009) 651-663.
  • [10] Palmeira C.M., Moreno A.J., Madeira V.M., Mitochondrial bioenergetics is affected by the herbicide paraquat, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1229 (2) (1995) 187-192.
  • [11] Costa L.G., Toxic effects of pesticides. Casarett and Doull’s toxicology, Tthe Basic Science of Poisons, 8 (2008) 883-930.
  • [12] Maroni M., Colosio C., Ferioli A., Fait A., Quaternary Ammonium Compounds, Toxicology, 143 (2000) 85-89.
  • [13] Lin H.M., Liu H.L., Yang M.C., Tsai T.H., Chou C.C., Chang C.F., Lin Y.R., Clinical features and outcome analysis of patients suffer from paraquat intoxication in central Taiwan, Journal of Emergency Medicine, 12 (4) (2010) 99-106.
  • [14] Oliveira R.J., Remiao F., Carmo H., Duarte J.A., Navarro A.S., Bastos M.L., Carvalho F., Paraquat exposure as an etiological factor of Parkinson's disease, Neurotoxicology, 27 (6) (2006) 1110-1122.
  • [15] Henchcliffe C., Beal M.F., Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis, Nature Clinical Practice Neurology, 4 (11) (2008) 600-609.
  • [16] Klein C., Schneider S.A., Lang A.E., Hereditary parkinsonism: Parkinson disease look‐alikes—An algorithm for clinicians to “PARK” genes and beyond. Movement disorders, Official Journal of the Movement Disorder Society, 24 (14) (2009) 2042-2058.
  • [17] Berry C., La Vecchia C., Nicotera P., Paraquat and Parkinson's disease, Cell Death & Differentiation, 17 (7) (2010) 1115-1125.
  • [18] Tomlin C.D.S., The pesticide manual: a world compendium. 12th Ed. British Crop Protection Council, Bracknel, 14 (2000) 502-504.
  • [19] Yang J., Wang X.Z., Hage D.S., Herman P.L., Weeks D.P., Analysis of dicamba degradation by Pseudomonas maltophilia using high-performance capillary electrophoresis, Analytical Biochemistry, 219 (1) (1994) 37-42.
  • [20] Kaushik G., Satya S., Naik S.N., Food processing a tool to pesticide residue dissipation–A review, Food Research International, 42 (1) (2009) 26-40.
  • [21] Fischer B.B., Pomati F., Eggen R.I., The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity, Science of the Total Environment, 449 (2013) 253-259.
  • [22] Woudneh M.B., Sekela M., Tuominen T., Gledhill M., Acidic herbicides in surface waters of lower Fraser valley, British Columbia, Canada, Journal of Chromatography A, 1139 (1) (2007) 121-129.
  • [23] Perocco P., Ancora G., Rani P., Valenti A.M., Mazzullo M., Colacci A., Grilli S., Evaluation of genotoxic effects of the herbicide dicamba using in vivo and in vitro test systems, Environmental and Molecular Mutagenesis, 15 (3) (1990) 131-135.
  • [24] González N.V., Soloneski S., Larramendy M.L., The chlorophenoxy herbicide dicamba and its commercial formulation banvel® induce genotoxicity and cytotoxicity in Chinese hamster ovary (CHO) cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 634 (1-2) (2007) 60-68.
  • [25] Piotrowska A., Syguda A., Wyrwas B., Chrzanowski Ł., Heipieper H.J., Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida, Chemosphere, 167 (2017) 114-119.
  • [26] Lehner B., Crombie C., Tischler J., Fortunato A., Fraser A.G., Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways, Nature Genetics, 38 (8) (2006) 896-903.
  • [27] Boyd W.A., Smith M.V., Freedman J.H., Caenorhabditis elegans as a model in developmental toxicology, In Developmental Toxicology, Humana Press, Totowa, NJ (2012) 15-24
  • [28] David H.E., Dawe A.S., de Pomerai D.I., Jones D., Candido E.P.M., Daniells C., Construction and evaluation of a transgenic hsp16‐GFP‐lacZ Caenorhabditis elegans strain for environmental monitoring, Environmental Toxicology and Chemistry: An International Journal, 22 (1) (2003) 111-118.
  • [29] Artal‐Sanz M., de Jong L., Tavernarakis N., Caenorhabditis elegans: a versatile platform for drug discovery, Biotechnology Journal: Healthcare Nutrition Technology, 1 (12) (2006) 1405-1418.
  • [30] Leung M.C., Williams P.L., Benedetto A., Au C., Helmcke K.J., Aschner M., Meyer J.N., Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology, Toxicological Sciences, 106 (1) (2008) 5-28.
  • [31] Baugh L.R., To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest, Genetics, 194 (3) (2013) 539-555.
  • [32] Helmcke K.J., Aschner M., Hormetic effect of methylmercury on Caenorhabditis elegans, Toxicology and Applied Pharmacology, 248 (2) (2010) 156-164.
  • [33] Chu K.W., Chow K.L., Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative, Aquatic Toxicology, 61 (1-2) (2002) 53-64.
  • [34] Menzel R., Rödel M., Kulas J., Steinberg C.E., CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans, Archives of Biochemistry and Biophysics, 438 (1) (2005) 93-102.
  • [35] Reichert K., Menzel R., Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray, Chemosphere, 61 (2) (2005) 229-237.
  • [36] Senchuk M.M., Dues D. J., Van Raamsdonk, J.M., Measuring oxidative stress in Caenorhabditis elegans: paraquat and juglone sensitivity assays, Bio-protocol, 7 (1) (2017) 2086-2086.
  • [37] Soloneski S., De Arcaute C.R., Larramendy M.L., Genotoxic effect of a binary mixture of dicamba-and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867)(Anura, Bufonidae) late-stage larvae. Environmental Science and Pollution Research, 23 (17) (2016) 17811-17821.
  • [38] Turner L.W., Defining the Developmental Toxicity of the Herbicide Dicamba Using the Zebrafish Model System. The Journal of Purdue Undergraduate Research, 9 (1) (2019) 30.
There are 38 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Alper Zöngür 0000-0003-4946-3199

Musa Sari 0000-0002-6431-643X

Publication Date March 26, 2023
Submission Date July 29, 2022
Acceptance Date February 24, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Zöngür, A., & Sari, M. (2023). Toxicity of Paraquat and Dicamba on Caenorhabditis Elegans LC50 Value. Cumhuriyet Science Journal, 44(1), 7-12. https://doi.org/10.17776/csj.1150823