Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 1, 67 - 71, 26.03.2023
https://doi.org/10.17776/csj.1134711

Abstract

References

  • [1] Marcolino V. A., Pimentel T. C., Barao C. E., What to expect from different drugs used in the treatment of COVID-19: A study on applications and in vivo and in vitro results, European Journal of Pharmacology, 887 (2020) 173467.
  • [2] Nechipurenko Y. D., Semyonov D. A., Lavrinenko I. A., Lagutkin, D. A., Generalov, E. A., Zaitceva, A. Y., Yegorov, Y. E., The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Biology, 10(9) (2021) 852.
  • [3] Akkemik E., Çalışır Ü., Çiçek B., İnsan karbonik anhidraz I, II izoenzim aktiviteleri üzerine bazı tiyocrown eterlerin etkisi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2) (2017) 192-199.
  • [4] Thiry A., Dogne J. M., Supuran C. T., Masereel B., Carbonic anhydrase inhibitors as anticonvulsant agents, Current Topics in Medicinal Chemistry, 7(9) (2007): 855-864.
  • [5] Supuran, CT Karbonik anhidraz inhibitörleri: hipoksik tümörlerin tedavisi ve görüntülenmesi için deneysel ajanlar hakkında bir güncelleme, Araştırma İlaçları Hakkında Uzman Görüşü , 30(12) (2021) 1197-1208.
  • [6] Supuran, C. T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert opinion on therapeutic patents, 28(10) (2018) 709-712.
  • [7] Alfano G., Fontana F., Mori G., Giaroni F., Ferrari A., Giovanella S., Guaraldi G., COVID-19 hastalarında asit baz bozuklukları, Uluslararası Üroloji ve Nefroloji , 54(2) (2022) 405-410.
  • [8] Emameh R. Z., Falak R., Bahreini E., Application of system biology to explore the association of neprilysin, angiotensin-converting enzyme 2 (ACE2), and carbonic anhydrase (CA) in pathogenesis of SARS-CoV-2, Biological Procedures Online, 22(1) (2020) 1-9.
  • [9] Deniz S., Uysal T. K., Capasso C., Supuran C. T., Ozensoy Guler O., Is carbonic anhydrase inhibition useful as a complementary therapy of Covid-19 infection?, Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1) (2021) 1230-1235.
  • [10] Watkins P. B., Zimmerman H. J., Knapp M. J., Gracon S. I., Lewis K. W., Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease, Jama, 271(13) (1994) 992-998.
  • [11] Marucci G., Buccioni M., Dal Ben D., Lambertucci C., Volpini R., Amenta F., Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease, Neuropharmacology, 190 (2021) 108352.
  • [12] Komloova M., Musilek K., Dolezal M., Gunn-Moore F., Kuca K., Structure-activity relationship of quaternary acetylcholinesterase inhibitors-outlook for early myasthenia gravis treatment, Current Medicinal Chemistry, 17(17) (2010) 1810-1824.
  • [13] Almasieh M., MacIntyre J. N., Pouliot M., Casanova C., Vaucher E., Kelly M. E., Di Polo A., Acetylcholinesterase inhibition promotes retinal vasoprotection and increases ocular blood flow in experimental glaucoma, Investigative Ophthalmology & Visual Science, 54(5) (2013) 3171-3183.
  • [14] Armstrong J.M., Myers D.V., Verpoorte J.A., Edsall J.T., Purification and Properties of Human Erythrocyte Carbonic Anhydrase, The Journal of Biological Chemistry, 241(21) (1966) 5137-5149.
  • [15] Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242.18 (1967): 4221-4229.
  • [16] Göçer H., Akıncıoğlu A., Öztaşkın N., Göksu S., Gülçin İ., Synthesis, Antioxidant, and Antiacetylcholinesterase Activities of Sulfonamide Derivatives of Dopamine-Related Compounds, Archiv der Pharmazie, 346(11) (2013) 783-792.
  • [17] Gürdere M. B., Budak Y., Kocyigit U. M., Taslimi P., Tüzün B., Ceylan M., ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: new analogues for the treatment of Alzheimer, glaucoma and epileptic diseases, In Silico Pharmacology, 9(1) (2021) 1-11.
  • [18] Ellman G.L., Courtney K.D., Andres J.V., Featherstone R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, 7(2) (1961) 88-95.

Investıgatıon of the Effects of Favipiravir and Oseltamivir Active Substances Used in the Treatment of Covid-19 on Carbonic Anhydrase I-II Isoenzymes and Acetylcholine Enzyme Activities in Vitro

Year 2023, Volume: 44 Issue: 1, 67 - 71, 26.03.2023
https://doi.org/10.17776/csj.1134711

Abstract

Covid-19, originating from Wuhan, China, is a worldwide health problem. Immune system abnormalities caused by covid-19 lead to infections, septic shock, and severe multi-organ dysfunction. The drugs used for treatment are palliative pharmacological alternatives and help manage symptoms or complications that occur during the course of the disease. Both carbonic anhydrases and cholinesterases can be target enzymes for drugs. The goal of this study is to determine how the drugs used in covid-19 affect patients being treated for Alzheimer's disease, myasthenia gravis, glaucoma, or epilepsy, and to determine if there are drug-drug interactions. In case of possible interactions, it is crucial for these patients to consider alternative treatments and to recheck the dosage of the drugs used. To this end, the effects of the drugs favipiravir and oseltamivir, which are used in the covid-19 clinic and whose relationship with these enzymes has not been previously studied, on the isoenzymes of carbonic anhydrase I- II and the enzyme acetylcholinesterase were studied in vitro. No inhibition or activation was observed on the enzyme acetylcholinesterase, while inhibition was observed for the isoenzyme carbonic anhydrase I - II.

References

  • [1] Marcolino V. A., Pimentel T. C., Barao C. E., What to expect from different drugs used in the treatment of COVID-19: A study on applications and in vivo and in vitro results, European Journal of Pharmacology, 887 (2020) 173467.
  • [2] Nechipurenko Y. D., Semyonov D. A., Lavrinenko I. A., Lagutkin, D. A., Generalov, E. A., Zaitceva, A. Y., Yegorov, Y. E., The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Biology, 10(9) (2021) 852.
  • [3] Akkemik E., Çalışır Ü., Çiçek B., İnsan karbonik anhidraz I, II izoenzim aktiviteleri üzerine bazı tiyocrown eterlerin etkisi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2) (2017) 192-199.
  • [4] Thiry A., Dogne J. M., Supuran C. T., Masereel B., Carbonic anhydrase inhibitors as anticonvulsant agents, Current Topics in Medicinal Chemistry, 7(9) (2007): 855-864.
  • [5] Supuran, CT Karbonik anhidraz inhibitörleri: hipoksik tümörlerin tedavisi ve görüntülenmesi için deneysel ajanlar hakkında bir güncelleme, Araştırma İlaçları Hakkında Uzman Görüşü , 30(12) (2021) 1197-1208.
  • [6] Supuran, C. T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert opinion on therapeutic patents, 28(10) (2018) 709-712.
  • [7] Alfano G., Fontana F., Mori G., Giaroni F., Ferrari A., Giovanella S., Guaraldi G., COVID-19 hastalarında asit baz bozuklukları, Uluslararası Üroloji ve Nefroloji , 54(2) (2022) 405-410.
  • [8] Emameh R. Z., Falak R., Bahreini E., Application of system biology to explore the association of neprilysin, angiotensin-converting enzyme 2 (ACE2), and carbonic anhydrase (CA) in pathogenesis of SARS-CoV-2, Biological Procedures Online, 22(1) (2020) 1-9.
  • [9] Deniz S., Uysal T. K., Capasso C., Supuran C. T., Ozensoy Guler O., Is carbonic anhydrase inhibition useful as a complementary therapy of Covid-19 infection?, Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1) (2021) 1230-1235.
  • [10] Watkins P. B., Zimmerman H. J., Knapp M. J., Gracon S. I., Lewis K. W., Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease, Jama, 271(13) (1994) 992-998.
  • [11] Marucci G., Buccioni M., Dal Ben D., Lambertucci C., Volpini R., Amenta F., Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease, Neuropharmacology, 190 (2021) 108352.
  • [12] Komloova M., Musilek K., Dolezal M., Gunn-Moore F., Kuca K., Structure-activity relationship of quaternary acetylcholinesterase inhibitors-outlook for early myasthenia gravis treatment, Current Medicinal Chemistry, 17(17) (2010) 1810-1824.
  • [13] Almasieh M., MacIntyre J. N., Pouliot M., Casanova C., Vaucher E., Kelly M. E., Di Polo A., Acetylcholinesterase inhibition promotes retinal vasoprotection and increases ocular blood flow in experimental glaucoma, Investigative Ophthalmology & Visual Science, 54(5) (2013) 3171-3183.
  • [14] Armstrong J.M., Myers D.V., Verpoorte J.A., Edsall J.T., Purification and Properties of Human Erythrocyte Carbonic Anhydrase, The Journal of Biological Chemistry, 241(21) (1966) 5137-5149.
  • [15] Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242.18 (1967): 4221-4229.
  • [16] Göçer H., Akıncıoğlu A., Öztaşkın N., Göksu S., Gülçin İ., Synthesis, Antioxidant, and Antiacetylcholinesterase Activities of Sulfonamide Derivatives of Dopamine-Related Compounds, Archiv der Pharmazie, 346(11) (2013) 783-792.
  • [17] Gürdere M. B., Budak Y., Kocyigit U. M., Taslimi P., Tüzün B., Ceylan M., ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: new analogues for the treatment of Alzheimer, glaucoma and epileptic diseases, In Silico Pharmacology, 9(1) (2021) 1-11.
  • [18] Ellman G.L., Courtney K.D., Andres J.V., Featherstone R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, 7(2) (1961) 88-95.
There are 18 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Sueda Arık 0000-0003-3275-7035

Ümit Muhammet Koçyiğit 0000-0001-8710-2912

Publication Date March 26, 2023
Submission Date June 23, 2022
Acceptance Date January 16, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Arık, S., & Koçyiğit, Ü. M. (2023). Investıgatıon of the Effects of Favipiravir and Oseltamivir Active Substances Used in the Treatment of Covid-19 on Carbonic Anhydrase I-II Isoenzymes and Acetylcholine Enzyme Activities in Vitro. Cumhuriyet Science Journal, 44(1), 67-71. https://doi.org/10.17776/csj.1134711