Research Article
BibTex RIS Cite
Year 2022, Volume: 43 Issue: 1, 33 - 37, 30.03.2022
https://doi.org/10.17776/csj.1017247

Abstract

References

  • [1] Erdem H.U., Kalın R., Özdemir N., Özdemir H., Purification and Biochemical Characterization of Peroxidase İsolated From White Cabbage (Brassica oleracea Var. Capitata F. Alba), International Journal of Food Properties., 18 (2015) 2099- 2109.
  • [2] Halliwell B., Oxygen radicals: A Commonsense Look at Their Nature and Medical Importance, Medical Biology, 62 (1984) 71- 77.
  • [3] Wolfson LM., Sumner SS., Antibacterial Activity of the Lactoperoxidase System: A Review, Journal of Food Protection, 56 (1993) 887-892.
  • [4] Reiter B., Review of the Progress of Dairy Science: Antimicrobial Systems in Milk, Journal of Dairy Research, 45 (1978) 131-147.
  • [5] Mayhoub A.S., Marler L., Kondratyuk T.P., Park E.J., Pezzuto J.M., Cushman M., Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets, Bioorg. Med. Chem., 20(1) (2012) 510-20.
  • [6] Mayhoub A.S., Marler L., Kondratyuk T.P., Park E.J., Pezzuto J.M., Cushman M., Optimization of the aromatase inhibitory activities of pyridylthiazole analogues of resveratrol, Bioorg. Med. Chem., 20(7) (2012) 2427-34.
  • [7] Ozadali K., Tan O.U., Yogeeswari P., Dharmarajan S., Balkan A., Synthesis and antimycobacterial activities of some new thiazolylhydrazone derivatives, Bioorganic & Medicinal Chemistry Letters, 24(7) (2014) 1695-1697.
  • [8] Qin Y.J., Wang P.F., Makawana J.A., Wang Z.C., Wang Z.N., Jiang A.Q., Zhu H., Design, synthesis and biological evaluation of metronidazole–thiazole derivatives as antibacterial inhibitors, Bioorganic & Medicinal Chemistry Letters, 24(22) (2014) 5279-5283.
  • [9] Xu Z., Guo J., Yang Y., Zhang M., Ba M., Li Z., Guo C., 2, 4, 5-Trisubstituted thiazole derivatives as HIV-1 NNRTIs effective on both wild-type and mutant HIV-1 reverse transcriptase: optimization of the substitution of positions 4 and 5, European Journal of Medicinal Chemistry, 123 (2014) 309-316.
  • [10] Makam P., Thakur P.K., Kannan T., In vitro and in silico antimalarial activity of 2-(2-hydrazinyl) thiazole derivatives, European Journal of Pharmaceutical Sciences, 52 (2014) 138-145.
  • [11] Popsavin M., Kojić V., Torović L., Svirčev M., Spaić S., Jakimov D., Popsavin V., Synthesis and in vitro antitumour activity of tiazofurin analogues with nitrogen functionalities at the C-2′ position, European Journal of Medicinal Chemistry, 111 (2016) 114-125.
  • [12] Geronikaki A.A., Pitta E.P., Liaras K.S., Thiazoles and thiazolidinones as antioxidants, Curr. Med. Chem., 20, 4460-4480 (2013).
  • [13] Mishra C.B., Kumari S., Tiwari M., Thiazole: A promising heterocycle for the development of potent CNS active agents, European Journal of Medicinal Chemistry, 92 (2015) 1-34.
  • [14] Xu Q., Huang L., Liu J., Ma L., Chen T., Chen J., Chen L., Design, synthesis and biological evaluation of thiazole-and indole-based derivatives for the treatment of type II diabetes, European Journal of Medicinal Chemistry, 52 (2012) 70-81.
  • [15] Turan-Zitouni G., Chevallet P., Kilic FS., Erol K., Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity, European Journal of Medicinal Chemistry, 35(6) (2000) 635-641.
  • [16] Turan-Zitouni G., Ozdemir A., Kaplancikli Z.A., Altintop M.D., Temel H.E., Akalın Çiftçi G., Synthesis and biological evaluation of some thiazole derivatives as new cholinesterase inhibitors J. Enzyme Inhib. Med. Chem., 28(3) (2013) 509-514.
  • [17] Rahim F., Javed M.T., Ullah H., Wadood A., Taha M., Ashraf M., Khan K.M., Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease, Bioorganic Chemistry, 62 (2015) 106-116.
  • [18] El -Achkar G.A., Jouni M., Mrad M.F., Hirz T., El Hachem N., Khalaf A., Habib A., Thiazole derivatives as inhibitors of cyclooxygenases in vitro and in vivo, European Journal of Pharmacology, 750 (2015) 66-73.
  • [19] Shindler J.S., Bardsley W., Steady-State Kinetics of Lactoperoxidase With ABTS as Chromogens, Biochemical and Biophysical Research Communications, 67 (1975) 1307-1312.
  • [20] Kalin R., Köksal Z., Bayrak S., Gerni S., Ozyürek I.N., Usanmaz H., Gülçin İ., Molecular docking and inhibition profiles of some antibiotics on lactoperoxidase enzyme purified from bovine milk, Journal of Biomolecular Structure and Dynamics, (2020) 1-10.
  • [21] Atasever A., Ozdemir H., Gulcin I., Kufrevioglu O.I., One step purification of lactoperoxidase from bovine milk by affinity chromatography, Food Chemistry, 136(2) (2013) 864–870.
  • [22] Özyürek I.N., Kalın R., Özdemir H., D-Penisilamin, D-Penisilamin disülfit ve N-Asetil-D-penisilamin’in Laktoperoksidaz Enzim Aktivitesi Üzerine İnhibisyon Etkileri, Journal of the Institute of Science and Technology, 10(2) (2020) 1146-1153.
  • [23] Lineweaver H., Burk D.J., The Determination of Enzyme Dissociation Constants, Journal of the American Chemical Society, 56 (1934) 658-66.
  • [24] Berg J., Tymoczko J.L., Stryer L., W. H. Freeman and Company ISBN, Biochemistry, (2002) 0- 7167-4955-6.
  • [25] Berg J.M., Tymoczko J.L., Stryer L., Biochemistry 6th ed. New York: W. H. Freeman and Company (2007).
  • [26] Hussain S., Slikker J.R., W., Ali S.F., Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain, International Journal of Developmental Neuroscience, 13(8) (1995) 811-817
  • [27] Sievers G., Structure of milk lactoperoxidase. A study using circular dischroism and difference absorption sperctroscopy, Biochimica et Biophysica Acta, (1980) 624: 249
  • [28] Singh AK., Singh N., Sharma S., Kaur P., Srinivasan A., Singh T.P., Crystal structure of lactoperoxidase at 2.4A resolution, J. Mol. Biol., 376(1) (2007) 1060– 1075.
  • [29] Jacob B.M., Antony K.E., Sreekumar B., Haridas M., Thiocyanate mediated antifungal and antibacterial property of goat milk lactoperoxidase, Life Sciences, 66 (25) (2000) 2433-2439.
  • [30] Wang G., He D., Li X., Li J., Peng Z., Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors, Bioorganic Chemistry, 65 (2016) 167-174.
  • [31] Demir Y., Taslimi P., Koçyiğit Ü.M., Akkuş M., Özaslan M.S., Duran H.E., Beydemir Ş., Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies, Archiv der Pharmazie., 353(12) (2020) 2000118.
  • [32] Barrett N.E., Grandison A.S., Lewis M.J., Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk, Journal of Dairy Research., 66(1) (1999) 73-80.
  • [33] Reiter B., Härnulv G., Lactoperoxidase antibacterial system: natural occurrence, biological functions and practical applications, Journal of Food Protection, 47(9) (1984) 724-732.
  • [34] Kussendrager K.D., Van Hooijdonk A.C.M., Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications, British Journal of Nutrition, 84(S1) (2000) 19-25.
  • [35] Köksal Z., Kalin R., Camadan Y., Usanmaz H., Almaz Z., Gülçin İ., Ozdemir H., Secondary sulfonamides as effective lactoperoxidase inhibitors, Molecules, 22(6) (2017) 793.
  • [36] Song J.U., Choi S.P., Kim T.H., Jung C.K., Lee J.Y., Jung S.H., Kim G.T., Design and synthesis of novel 2-(indol-5-yl) thiazole derivatives as xanthine oxidase inhibitors, Bioorganic & Medicinal Chemistry Letters, 25(6) (2015) 1254-1258.
  • [37] Kılıcaslan S., Arslan M., Ruya Z., Bilen Ç., Ergün A., Gençer N., Arslan O., Synthesis and evaluation of sulfonamide-bearing thiazole as carbonic anhydrase isoforms hCA I and hCA II, Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6 (2016) 1300-1305.
  • [38] Kalın R., Laktoperoksidaz Sistemine Karşı Sesamolün İnhibisyon Kinetiği, Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 9(4), 389-395.

In Vitro Inhibition Effects of 2-Amino Thiazole Derivatives on Lactoperoxidase Enzyme Activity

Year 2022, Volume: 43 Issue: 1, 33 - 37, 30.03.2022
https://doi.org/10.17776/csj.1017247

Abstract

Lactoperoxidase (LPO E.C. 1.11.1.7) is a member of the peroxidase family and is an important glycoprotein containing heme group in its structure and showing the antimicrobial effect on disease causing microorganisms in the digestive system of newborn babies. Thiazoles are the simplest members of heterocyclic compounds containing nitrogen and sulfur atoms in their structure. Many active pharmaceutical substances such as vitamin B1, penicillin, and those obtained by synthesis, contain a thiazole ring. It is desirable to evaluate the biological activities of thiazole derivatives, such as antiprotozoal antibacterial, antifungal, antituberculosis, and anthelmintic, with emphasis on their potential medical applications. The aim of this study was to determine the in vitro inhibition profiles of 2-amino thiazole derivatives against bovine LPO enzyme. In this study it was determined that all amino thiazole derivatives inhibited the LPO enzyme competitively. When the results were compared with each other, the 2-Amino-4-(4-chlorophenyl) thiazole compound showed the best inhibition effect against LPO with the Ki value of 250±100 nM.

References

  • [1] Erdem H.U., Kalın R., Özdemir N., Özdemir H., Purification and Biochemical Characterization of Peroxidase İsolated From White Cabbage (Brassica oleracea Var. Capitata F. Alba), International Journal of Food Properties., 18 (2015) 2099- 2109.
  • [2] Halliwell B., Oxygen radicals: A Commonsense Look at Their Nature and Medical Importance, Medical Biology, 62 (1984) 71- 77.
  • [3] Wolfson LM., Sumner SS., Antibacterial Activity of the Lactoperoxidase System: A Review, Journal of Food Protection, 56 (1993) 887-892.
  • [4] Reiter B., Review of the Progress of Dairy Science: Antimicrobial Systems in Milk, Journal of Dairy Research, 45 (1978) 131-147.
  • [5] Mayhoub A.S., Marler L., Kondratyuk T.P., Park E.J., Pezzuto J.M., Cushman M., Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets, Bioorg. Med. Chem., 20(1) (2012) 510-20.
  • [6] Mayhoub A.S., Marler L., Kondratyuk T.P., Park E.J., Pezzuto J.M., Cushman M., Optimization of the aromatase inhibitory activities of pyridylthiazole analogues of resveratrol, Bioorg. Med. Chem., 20(7) (2012) 2427-34.
  • [7] Ozadali K., Tan O.U., Yogeeswari P., Dharmarajan S., Balkan A., Synthesis and antimycobacterial activities of some new thiazolylhydrazone derivatives, Bioorganic & Medicinal Chemistry Letters, 24(7) (2014) 1695-1697.
  • [8] Qin Y.J., Wang P.F., Makawana J.A., Wang Z.C., Wang Z.N., Jiang A.Q., Zhu H., Design, synthesis and biological evaluation of metronidazole–thiazole derivatives as antibacterial inhibitors, Bioorganic & Medicinal Chemistry Letters, 24(22) (2014) 5279-5283.
  • [9] Xu Z., Guo J., Yang Y., Zhang M., Ba M., Li Z., Guo C., 2, 4, 5-Trisubstituted thiazole derivatives as HIV-1 NNRTIs effective on both wild-type and mutant HIV-1 reverse transcriptase: optimization of the substitution of positions 4 and 5, European Journal of Medicinal Chemistry, 123 (2014) 309-316.
  • [10] Makam P., Thakur P.K., Kannan T., In vitro and in silico antimalarial activity of 2-(2-hydrazinyl) thiazole derivatives, European Journal of Pharmaceutical Sciences, 52 (2014) 138-145.
  • [11] Popsavin M., Kojić V., Torović L., Svirčev M., Spaić S., Jakimov D., Popsavin V., Synthesis and in vitro antitumour activity of tiazofurin analogues with nitrogen functionalities at the C-2′ position, European Journal of Medicinal Chemistry, 111 (2016) 114-125.
  • [12] Geronikaki A.A., Pitta E.P., Liaras K.S., Thiazoles and thiazolidinones as antioxidants, Curr. Med. Chem., 20, 4460-4480 (2013).
  • [13] Mishra C.B., Kumari S., Tiwari M., Thiazole: A promising heterocycle for the development of potent CNS active agents, European Journal of Medicinal Chemistry, 92 (2015) 1-34.
  • [14] Xu Q., Huang L., Liu J., Ma L., Chen T., Chen J., Chen L., Design, synthesis and biological evaluation of thiazole-and indole-based derivatives for the treatment of type II diabetes, European Journal of Medicinal Chemistry, 52 (2012) 70-81.
  • [15] Turan-Zitouni G., Chevallet P., Kilic FS., Erol K., Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity, European Journal of Medicinal Chemistry, 35(6) (2000) 635-641.
  • [16] Turan-Zitouni G., Ozdemir A., Kaplancikli Z.A., Altintop M.D., Temel H.E., Akalın Çiftçi G., Synthesis and biological evaluation of some thiazole derivatives as new cholinesterase inhibitors J. Enzyme Inhib. Med. Chem., 28(3) (2013) 509-514.
  • [17] Rahim F., Javed M.T., Ullah H., Wadood A., Taha M., Ashraf M., Khan K.M., Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease, Bioorganic Chemistry, 62 (2015) 106-116.
  • [18] El -Achkar G.A., Jouni M., Mrad M.F., Hirz T., El Hachem N., Khalaf A., Habib A., Thiazole derivatives as inhibitors of cyclooxygenases in vitro and in vivo, European Journal of Pharmacology, 750 (2015) 66-73.
  • [19] Shindler J.S., Bardsley W., Steady-State Kinetics of Lactoperoxidase With ABTS as Chromogens, Biochemical and Biophysical Research Communications, 67 (1975) 1307-1312.
  • [20] Kalin R., Köksal Z., Bayrak S., Gerni S., Ozyürek I.N., Usanmaz H., Gülçin İ., Molecular docking and inhibition profiles of some antibiotics on lactoperoxidase enzyme purified from bovine milk, Journal of Biomolecular Structure and Dynamics, (2020) 1-10.
  • [21] Atasever A., Ozdemir H., Gulcin I., Kufrevioglu O.I., One step purification of lactoperoxidase from bovine milk by affinity chromatography, Food Chemistry, 136(2) (2013) 864–870.
  • [22] Özyürek I.N., Kalın R., Özdemir H., D-Penisilamin, D-Penisilamin disülfit ve N-Asetil-D-penisilamin’in Laktoperoksidaz Enzim Aktivitesi Üzerine İnhibisyon Etkileri, Journal of the Institute of Science and Technology, 10(2) (2020) 1146-1153.
  • [23] Lineweaver H., Burk D.J., The Determination of Enzyme Dissociation Constants, Journal of the American Chemical Society, 56 (1934) 658-66.
  • [24] Berg J., Tymoczko J.L., Stryer L., W. H. Freeman and Company ISBN, Biochemistry, (2002) 0- 7167-4955-6.
  • [25] Berg J.M., Tymoczko J.L., Stryer L., Biochemistry 6th ed. New York: W. H. Freeman and Company (2007).
  • [26] Hussain S., Slikker J.R., W., Ali S.F., Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain, International Journal of Developmental Neuroscience, 13(8) (1995) 811-817
  • [27] Sievers G., Structure of milk lactoperoxidase. A study using circular dischroism and difference absorption sperctroscopy, Biochimica et Biophysica Acta, (1980) 624: 249
  • [28] Singh AK., Singh N., Sharma S., Kaur P., Srinivasan A., Singh T.P., Crystal structure of lactoperoxidase at 2.4A resolution, J. Mol. Biol., 376(1) (2007) 1060– 1075.
  • [29] Jacob B.M., Antony K.E., Sreekumar B., Haridas M., Thiocyanate mediated antifungal and antibacterial property of goat milk lactoperoxidase, Life Sciences, 66 (25) (2000) 2433-2439.
  • [30] Wang G., He D., Li X., Li J., Peng Z., Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors, Bioorganic Chemistry, 65 (2016) 167-174.
  • [31] Demir Y., Taslimi P., Koçyiğit Ü.M., Akkuş M., Özaslan M.S., Duran H.E., Beydemir Ş., Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies, Archiv der Pharmazie., 353(12) (2020) 2000118.
  • [32] Barrett N.E., Grandison A.S., Lewis M.J., Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk, Journal of Dairy Research., 66(1) (1999) 73-80.
  • [33] Reiter B., Härnulv G., Lactoperoxidase antibacterial system: natural occurrence, biological functions and practical applications, Journal of Food Protection, 47(9) (1984) 724-732.
  • [34] Kussendrager K.D., Van Hooijdonk A.C.M., Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications, British Journal of Nutrition, 84(S1) (2000) 19-25.
  • [35] Köksal Z., Kalin R., Camadan Y., Usanmaz H., Almaz Z., Gülçin İ., Ozdemir H., Secondary sulfonamides as effective lactoperoxidase inhibitors, Molecules, 22(6) (2017) 793.
  • [36] Song J.U., Choi S.P., Kim T.H., Jung C.K., Lee J.Y., Jung S.H., Kim G.T., Design and synthesis of novel 2-(indol-5-yl) thiazole derivatives as xanthine oxidase inhibitors, Bioorganic & Medicinal Chemistry Letters, 25(6) (2015) 1254-1258.
  • [37] Kılıcaslan S., Arslan M., Ruya Z., Bilen Ç., Ergün A., Gençer N., Arslan O., Synthesis and evaluation of sulfonamide-bearing thiazole as carbonic anhydrase isoforms hCA I and hCA II, Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6 (2016) 1300-1305.
  • [38] Kalın R., Laktoperoksidaz Sistemine Karşı Sesamolün İnhibisyon Kinetiği, Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 9(4), 389-395.
There are 38 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Işıl Nihan Korkmaz 0000-0003-4896-5226

Publication Date March 30, 2022
Submission Date November 1, 2021
Acceptance Date January 25, 2022
Published in Issue Year 2022Volume: 43 Issue: 1

Cite

APA Korkmaz, I. N. (2022). In Vitro Inhibition Effects of 2-Amino Thiazole Derivatives on Lactoperoxidase Enzyme Activity. Cumhuriyet Science Journal, 43(1), 33-37. https://doi.org/10.17776/csj.1017247