Research Article
BibTex RIS Cite

Tetracycline adsorption via dye-attached polymeric microbeads

Year 2021, Volume: 42 Issue: 3, 638 - 648, 24.09.2021
https://doi.org/10.17776/csj.944066

Abstract

In this study, the adsorption of tetracycline (TC) onto polymeric microbeads was investigated. For this purpose, suspension polymerization was used to synthesize poly(2-hydroxyethyl methacrylate) [poly(HEMA)] microbeads. Cibacron Blue F3GA (CB) was covalently attached to poly(HEMA) microbeads and the microbeads were tested as an adsorbent for subsequent TC adsorption. The effects of various parameters, such as pH value, initial TC concentration, temperature, and contact time, were investigated. The maximum adsorption capacity (Q) of microbeads was found to be 9.63 mg g-1 at pH 7.0. The results showed that the adsorption process was fast and occurred spontaneously within the first 5 minute. The adsorption process was fitted to the Freundlich isotherm model. The thermodynamic parameters of the adsorption, the enthalpy (∆H°) and entropy (∆S°), were calculated as 69.26 kJ mol-1 and 0.290 kJ mol-1 K-1, respectively. The Gibbs free energy (∆G°) was also calculated in the range of -11.069 kJ mol-1 to -17.159 kJ mol-1 with increase in temperature from 277 K to 298 K indicating that the TC adsorption process was spontaneous and endothermic. The results revealed that the poly(HEMA) microbeads could be effectively used to adsorption of TC from aqueous solution.

Thanks

The autors are grateful for their support to the Bursa Uludag University, Scientific Research Unit (BİYG Fund).

References

  • [1] Li J., Han M., Guo Y., Wang F., Meng L., Mao D., Ding S., Sun C., Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal, Appl. Catal. A-Gen., 524 (2016) 105-114.
  • [2] Wang H., Yao H., Sun P., Pei J., Li D., Huang C., Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation, Chemosphere., 119 (2015) 1255-1261.
  • [3] Leng Y., Bao J., Chang G., Zheng H., Li X., Du J., Snow D., Li X., Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1, J. Hazard. Mater., 318 (2016) 125-133.
  • [4] Hu X., Zhou Q., Luo Y., Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China, Environ. Pollut., 158 (2010) 2992-2998.
  • [5] Li M.F., Liu Y.G., Zeng G.M., Liu S.B., Hu X.J., Shu D., Jiang L., Tan X., Cai X., Yan Z., Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: influencing factors and uptake mechanism, J. Colloid Interface Sci., 485 (2017) 269-279.
  • [6] Dong H., Jiang Z., Zhang C., Deng J., Hou K., Cheng Y., Zhang L., Zeng G., Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution, J. Colloid Interface Sci., 513(1) (2018) 17-125.
  • [7] Cetecioglu Z., Ince B., Gros M., Rodriguez-Mozaz S., Barcelo D., Orhon D., Ince O., Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions, Water Res., 47 (2013) 2959-2969.
  • [8] Saitoh T., Shibata K., Fujimori K., Ohtani Y., Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions, Sep. Purif. Technol., 187 (2017) 76-83.
  • [9] Belhouchet N., Hamdi B., Chenchouni H., Bessekhouad Y., Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites, J. Photochem. Photobiol. A., 372 (2019) 196-205.
  • [10] Wang J., Zhi D., Zhou H., He X., Zhang D., Evaluating tetracycline degradation pathway and intermediate toxicity during the electrachemical oxidation over a Ti/Ti4O7 anode, Water Res., 137 (2018) 324-334.
  • [11] Lv J., Ma Y., Chang X., Fan S., Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X, Chem. Eng. J., 273 (2015) 247-25.
  • [12] Liu M., Liu Y., Bao D., Zhu G., Yang G., Geng J., Li H., Effective removal of tetracycline antibiotics from water using hybrid carbon membranes, Sci. Rep., 7 (2017) 43717.
  • [13] Benavides J., Barrias P., Piro N., Arenas A., Orrego A., Pino E., Villegas L., Dorta E., Aspee A., Lopez-Alarcon C., Reaction of tetracycline with biologically relevant chloramines, Spectrochim. Acta A Mol. Biomol. Spectrosc., 178 (2017) 171-180.
  • [14] Saitoh T., Shibata K., Hiraide M., Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation-sedimentation method, J. Environ. Chem. Eng., 2 (2014) 1852-1858.
  • [15] Sun Q., Lu J., Wu J., Zhu G., Catalytic ozonation of sulfonamide, fluoroquinolone, and tetracycline antibiotics using nano-magnesium hydroxide from natural bischofite, Water Air Soil Pollut., 230 (2019) 55-70.
  • [16] Yu B., Bai Y., Ming Z., Yang H., Chen L., Hu X., Feng S., Yang S., Adsorption behaviors of tetracycline on magnetic graphene oxide sponge, Mater. Chem. Phys., 198 (2017) 283-290.
  • [17] Zhou Y., Zhang F., Tang L., Zhang J., Zeng G., Luo L., Simultaneous removal of atrazine and copper using polyacrylic acid-functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism, Sci. Rep., 7 (2017) 43831.
  • [18] Yu Z., Zhang C., Zheng Z., Hu L., Li X., Yang Z., Ma C., Zeng G., Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid, App. Surf. Sci., 403 (2017) 413-425.
  • [19] Yang X., Xu G., Yu H., Zhang Z., Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal, Bioresour. Technol., 211 (2016) 566-573.
  • [20] Ersan M., Bagda E., Bagda E., Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels, Colloids Surf. B Biointerfaces., 104 (2013) 75-82.
  • [21] Marzbali M.H., Esmaieli M., Abolghasemi H., Marzbali M.H., Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study, Process Saf. Environ., 102 (2016) 700.
  • [22] Tian N., Tian X., Nie Y., Yang C., Zhou Z., Li Y., Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water, Chem. Eng. J., 352 (2018) 469-476.
  • [23] Jia S., Yang Z., Yang W., Zhang T., Zhang S., Yang X., Dong Y., Wu J., Wang Y., Removal of Cu(II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: Enhanced interaction between the flocculant and the antibiotic, Chem. Eng. J., 283 (2016) 495-503.
  • [24] Zhu J., Tian S., Polyacrylamide worked as adsorbents for tetracycline-polluted water treatment, J. Nanoelectron. Optoelectron., 12 (2017) 1364-1368.
  • [25] Percin I., Sener G., Demircelik A.H., Bereli N., Denizli A., Comparison of two different dye immobilized poly(hydroxyethyl methacrylate) cryogel discs for purification of lysozyme, Appl. Biochem. Biotechnol., 175 (2015) 2795-2805.
  • [26] Osman B., Cansev A., Cibacron Blue F3GA ile modifiye polimerik mikroküreler ile RuBisCO adsorpsiyonu, BAUN Fen Bil. Enst. Dergisi., 23(2) (2021) 685-702.
  • [27] Arıca M.Y., Denizli A., Salih B., Pişkin E., Hasırcı V., Catalase adsorption onto Cibacron Blue F3GA and Fe(III) derivatized poly(hydroxyethyl methacrylate) membranes and application to a continuous system, J. Membr. Sci., 129 (1997) 65-76.
  • [28] Doğan A., Özkara S., Sarı M.M., Uzun L., Denizli A., Evaluation of human interferon adsorption performance of Cibacron Blue F3GA attached cryogels and interferon purification by using FPLC system, J. Chromatogr. B., 893-894 (2012) 69-76.
  • [29] Gu C., Karthikeyan K.G., Sibley S.D., Pedersen J.A., Complexation of the antibiotic tetracycline with humic acid, Chemosphere., 66 (2007) 1494-1501.
  • [30] Yu F., Ma J., Han S., Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents, Sci. Rep., 4 (2014) 1-8.
  • [31] Kocakulak M., Denizli A., Rad A.Y., Pişkin E., New sorbent for bilirubin removal from human plasma: Cibacron Blue F3GA-immobilized poly(EGDMA-HEMA) microbeads, J. Chromatogr. B Biomed. Sci. Appl., 693 (1997) 271-276.
  • [32] Okoli C.P., Ofomaja A.E., Degree of time dependency of kinetic coefficient as a function of adsorbate concentration; new insights from adsorption of tetracycline onto monodispersed starch-stabilized magnetic nanocomposite, J. Environ. Manage., 218 (2018) 139-147.
  • [33] Langmuir I., The constitution and fundamental properties of solids and liquids, J. Franklin Inst., 183 (1917) 102-105.
  • [34] Freundlich H. Over the adsorption in solution, J. Phys. Chem., A 57 (1906) 385-471.
  • [35] Dubinin M.M., Radushkevich L.V. The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk. SSSR., 55 (1947) 331.
  • [36] Oladoja N.A., Adelagun R.O.A., Ahmad A.L., Unuabonah E.I., Bello H.A., Preparation of magnetic, macro-reticulated cross-linked chitosan for tetracycline removal from aquatic systems, Colloids Surf. B., 117 (2014) 51-59.
  • [37] Chen Y., Wang F., Duan L., Yang H., Gao J., Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies, J. Mol. Liq., 222 (2016) 487-494.
  • [38] Zhang P., Li Y., Cao Y., Han L., Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures, Bioresour. Technol., 285 (2019) 121348.
  • [39] Yu F., Yang C., Huang G., Zhou T., Zhao Y., Ma J., Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution, Sci. Total Environ., 721 (2020) 137729.
  • [40] Umar Isah A., Abdulraheem G., Bala S., Muhammad S., Abdullahi M., Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon, Int. Biodeterior. Biodegradation., 102 (2015) 265-273.
Year 2021, Volume: 42 Issue: 3, 638 - 648, 24.09.2021
https://doi.org/10.17776/csj.944066

Abstract

References

  • [1] Li J., Han M., Guo Y., Wang F., Meng L., Mao D., Ding S., Sun C., Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal, Appl. Catal. A-Gen., 524 (2016) 105-114.
  • [2] Wang H., Yao H., Sun P., Pei J., Li D., Huang C., Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation, Chemosphere., 119 (2015) 1255-1261.
  • [3] Leng Y., Bao J., Chang G., Zheng H., Li X., Du J., Snow D., Li X., Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1, J. Hazard. Mater., 318 (2016) 125-133.
  • [4] Hu X., Zhou Q., Luo Y., Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China, Environ. Pollut., 158 (2010) 2992-2998.
  • [5] Li M.F., Liu Y.G., Zeng G.M., Liu S.B., Hu X.J., Shu D., Jiang L., Tan X., Cai X., Yan Z., Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: influencing factors and uptake mechanism, J. Colloid Interface Sci., 485 (2017) 269-279.
  • [6] Dong H., Jiang Z., Zhang C., Deng J., Hou K., Cheng Y., Zhang L., Zeng G., Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution, J. Colloid Interface Sci., 513(1) (2018) 17-125.
  • [7] Cetecioglu Z., Ince B., Gros M., Rodriguez-Mozaz S., Barcelo D., Orhon D., Ince O., Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions, Water Res., 47 (2013) 2959-2969.
  • [8] Saitoh T., Shibata K., Fujimori K., Ohtani Y., Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions, Sep. Purif. Technol., 187 (2017) 76-83.
  • [9] Belhouchet N., Hamdi B., Chenchouni H., Bessekhouad Y., Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites, J. Photochem. Photobiol. A., 372 (2019) 196-205.
  • [10] Wang J., Zhi D., Zhou H., He X., Zhang D., Evaluating tetracycline degradation pathway and intermediate toxicity during the electrachemical oxidation over a Ti/Ti4O7 anode, Water Res., 137 (2018) 324-334.
  • [11] Lv J., Ma Y., Chang X., Fan S., Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X, Chem. Eng. J., 273 (2015) 247-25.
  • [12] Liu M., Liu Y., Bao D., Zhu G., Yang G., Geng J., Li H., Effective removal of tetracycline antibiotics from water using hybrid carbon membranes, Sci. Rep., 7 (2017) 43717.
  • [13] Benavides J., Barrias P., Piro N., Arenas A., Orrego A., Pino E., Villegas L., Dorta E., Aspee A., Lopez-Alarcon C., Reaction of tetracycline with biologically relevant chloramines, Spectrochim. Acta A Mol. Biomol. Spectrosc., 178 (2017) 171-180.
  • [14] Saitoh T., Shibata K., Hiraide M., Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation-sedimentation method, J. Environ. Chem. Eng., 2 (2014) 1852-1858.
  • [15] Sun Q., Lu J., Wu J., Zhu G., Catalytic ozonation of sulfonamide, fluoroquinolone, and tetracycline antibiotics using nano-magnesium hydroxide from natural bischofite, Water Air Soil Pollut., 230 (2019) 55-70.
  • [16] Yu B., Bai Y., Ming Z., Yang H., Chen L., Hu X., Feng S., Yang S., Adsorption behaviors of tetracycline on magnetic graphene oxide sponge, Mater. Chem. Phys., 198 (2017) 283-290.
  • [17] Zhou Y., Zhang F., Tang L., Zhang J., Zeng G., Luo L., Simultaneous removal of atrazine and copper using polyacrylic acid-functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism, Sci. Rep., 7 (2017) 43831.
  • [18] Yu Z., Zhang C., Zheng Z., Hu L., Li X., Yang Z., Ma C., Zeng G., Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid, App. Surf. Sci., 403 (2017) 413-425.
  • [19] Yang X., Xu G., Yu H., Zhang Z., Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal, Bioresour. Technol., 211 (2016) 566-573.
  • [20] Ersan M., Bagda E., Bagda E., Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels, Colloids Surf. B Biointerfaces., 104 (2013) 75-82.
  • [21] Marzbali M.H., Esmaieli M., Abolghasemi H., Marzbali M.H., Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study, Process Saf. Environ., 102 (2016) 700.
  • [22] Tian N., Tian X., Nie Y., Yang C., Zhou Z., Li Y., Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water, Chem. Eng. J., 352 (2018) 469-476.
  • [23] Jia S., Yang Z., Yang W., Zhang T., Zhang S., Yang X., Dong Y., Wu J., Wang Y., Removal of Cu(II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: Enhanced interaction between the flocculant and the antibiotic, Chem. Eng. J., 283 (2016) 495-503.
  • [24] Zhu J., Tian S., Polyacrylamide worked as adsorbents for tetracycline-polluted water treatment, J. Nanoelectron. Optoelectron., 12 (2017) 1364-1368.
  • [25] Percin I., Sener G., Demircelik A.H., Bereli N., Denizli A., Comparison of two different dye immobilized poly(hydroxyethyl methacrylate) cryogel discs for purification of lysozyme, Appl. Biochem. Biotechnol., 175 (2015) 2795-2805.
  • [26] Osman B., Cansev A., Cibacron Blue F3GA ile modifiye polimerik mikroküreler ile RuBisCO adsorpsiyonu, BAUN Fen Bil. Enst. Dergisi., 23(2) (2021) 685-702.
  • [27] Arıca M.Y., Denizli A., Salih B., Pişkin E., Hasırcı V., Catalase adsorption onto Cibacron Blue F3GA and Fe(III) derivatized poly(hydroxyethyl methacrylate) membranes and application to a continuous system, J. Membr. Sci., 129 (1997) 65-76.
  • [28] Doğan A., Özkara S., Sarı M.M., Uzun L., Denizli A., Evaluation of human interferon adsorption performance of Cibacron Blue F3GA attached cryogels and interferon purification by using FPLC system, J. Chromatogr. B., 893-894 (2012) 69-76.
  • [29] Gu C., Karthikeyan K.G., Sibley S.D., Pedersen J.A., Complexation of the antibiotic tetracycline with humic acid, Chemosphere., 66 (2007) 1494-1501.
  • [30] Yu F., Ma J., Han S., Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents, Sci. Rep., 4 (2014) 1-8.
  • [31] Kocakulak M., Denizli A., Rad A.Y., Pişkin E., New sorbent for bilirubin removal from human plasma: Cibacron Blue F3GA-immobilized poly(EGDMA-HEMA) microbeads, J. Chromatogr. B Biomed. Sci. Appl., 693 (1997) 271-276.
  • [32] Okoli C.P., Ofomaja A.E., Degree of time dependency of kinetic coefficient as a function of adsorbate concentration; new insights from adsorption of tetracycline onto monodispersed starch-stabilized magnetic nanocomposite, J. Environ. Manage., 218 (2018) 139-147.
  • [33] Langmuir I., The constitution and fundamental properties of solids and liquids, J. Franklin Inst., 183 (1917) 102-105.
  • [34] Freundlich H. Over the adsorption in solution, J. Phys. Chem., A 57 (1906) 385-471.
  • [35] Dubinin M.M., Radushkevich L.V. The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk. SSSR., 55 (1947) 331.
  • [36] Oladoja N.A., Adelagun R.O.A., Ahmad A.L., Unuabonah E.I., Bello H.A., Preparation of magnetic, macro-reticulated cross-linked chitosan for tetracycline removal from aquatic systems, Colloids Surf. B., 117 (2014) 51-59.
  • [37] Chen Y., Wang F., Duan L., Yang H., Gao J., Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies, J. Mol. Liq., 222 (2016) 487-494.
  • [38] Zhang P., Li Y., Cao Y., Han L., Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures, Bioresour. Technol., 285 (2019) 121348.
  • [39] Yu F., Yang C., Huang G., Zhou T., Zhao Y., Ma J., Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution, Sci. Total Environ., 721 (2020) 137729.
  • [40] Umar Isah A., Abdulraheem G., Bala S., Muhammad S., Abdullahi M., Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon, Int. Biodeterior. Biodegradation., 102 (2015) 265-273.
There are 40 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Aslı Göçenoğlu Sarıkaya 0000-0002-7161-7003

Bilgen Osman 0000-0001-8406-149X

Publication Date September 24, 2021
Submission Date May 28, 2021
Acceptance Date September 14, 2021
Published in Issue Year 2021Volume: 42 Issue: 3

Cite

APA Göçenoğlu Sarıkaya, A., & Osman, B. (2021). Tetracycline adsorption via dye-attached polymeric microbeads. Cumhuriyet Science Journal, 42(3), 638-648. https://doi.org/10.17776/csj.944066