Research Article
BibTex RIS Cite
Year 2021, Volume: 42 Issue: 3, 656 - 662, 24.09.2021
https://doi.org/10.17776/csj.901540

Abstract

References

  • [1] Siegel R.L., Miller K.D., Jemal A., Cancer statistics, 2019, CA: A Cancer Journal For Clinicians, 69(1) (2019) 7-34.
  • [2] Hayes J.D., Dinkova-Kostova A.T., Tew K.D., Oxidative stress in cancer, Cancer Cell, 38(2) (2020) 67-197.
  • [3] Milkovic L., Cipak Gasparovic A., Cindric M., Mouthuy P.A., Zarkovic N., Short overview of ROS as cell function regulators and their implications in therapy concepts, Cells, 8(8) (2019) 793.
  • [4] Zhu J., Thompson C.B., Metabolic regulation of cell growth and proliferatio, Nat. Rev. Mol. Cell Bio., 20(7) (2019) 436-450.
  • [5] Sies H., In Oxidative stress and vascular disease, Boston: Springer, (2000) 1-8.
  • [6] Arnér E.S., Holmgren A., Physiological functions of thioredoxin and thioredoxin reductase, Eur.J. Biochem., 267(20) (2000) 6102-6109.
  • [7] Lu J., Holmgren A., Thioredoxin system in cell death progression, Antioxid. Redox Signal.,17(12) (2012) 1738-1747.
  • [8] Gromer S., Urig S., Becker K., The thioredoxin system from science to clinic, Med. Res. Rev., 24(1) (2004) 40-89.
  • [9] Koharyova M., Kolarova M., Oxidative stress and thioredoxin system, Gen. Physiol. Biophys., 27(2) (2008) 71-84.
  • [10] Tonissen K.F., Di Trapani G., Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy, Mol. Nutri. Food Res., 53(1) (2009) 87-103.
  • [11] Holmgren A., Lu J., Thioredoxin and thioredoxin reductase: current research with special reference to human disease, Biochem. Biophys. Res. Commun., 396(1) (2010) 120-124.
  • [12] Zhang J., Li X., Han X., Liu R., Fang J., Targeting the thioredoxin system for cancer therapy, Trends Pharmacol. Sci., 38(9) (2017) 794-808.
  • [13] Lu J., Chew E.H., Holmgren A., Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide, Proceedings of the National Academy of Sciences, 104(30) (2007) 12288-12293.
  • [14] Qiu X., Liu Z., Shao W.Y., Liu X., Jing D.P., Yu Y.J., Gu L.Q., Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors, Bioorg. Med. Chem.,16(17) (2008) 8035-8041.
  • [15] Urig S., Becker K., On the potential of thioredoxin reductase inhibitors for cancer therapy, In Seminars in cancer biology, Elsevier, 16(6) (2006) 452-465.
  • [16] Saturnino C., Barone I., Iacopetta D., Mariconda A., Sinicropi M. S., Rosano C., Andò S., N-heterocyclic carbene complexes of silver and gold as novel tools against breast cancer progression, Future Med. Chem., 8(18) (2016) 2213-2229.
  • [17] Oehninger L., Rubbiani R., Ott I., N-Heterocyclic carbene metal complexes in medicinal chemistry, Dalton Trans., 42(10) (2013) 3269-3284.
  • [18] Jalal M., Hammouti B., Touzani R., Aouniti A., Ozdemir I., Metal-NHC heterocycle complexes in catalysis and biological applications: Systematic review, Materials Today: Proceedings, 31 (2020) 122-129.
  • [19] Vellé A., Maguire R. C., Kavanagh K., Sanz Miguel, P., Montagner, D., Steroid-Au(I)-NHC Complexes: Synthesis and Antibacterial Activity, ChemMedChem., 12(11) (2017) 841-844.
  • [20] Slimani I., Mansour L., Abutaha N., Harrath A. H., Al-Tamimi J., Gürbüz N., Özdemir İ., Hamdi N., Synthesis, structural characterization of silver(I)-NHC complexes and their antimicrobial, antioxidant and antitumor activities, J. King Saud Univ. Sci., 32(2) (2020) 1544-1554.
  • [21] Şahin-Bölükbaşı S., Şahin N., Novel Silver-NHC complexes: Synthesis and anticancer properties, J. Organomet.Chem., 891 (2019) 78-84.
  • [22] Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA quantum chemistry program package, The J. Chem. Phys., 152(22) (2020) 224108.
  • [23] Neese F., Software update: the ORCA program system, version 4.0., Wiley Interdisciplinary Reviews: Comput. Mol. Sci., 8(1) (2018) e1327.
  • [24] Parsonage D., Sheng F., Hirata K., Debnath A., Mckerrow J.H., Reed S.L., Abagyan R., Poole L.B., Podust L.M., X-Ray Structures of Thioredoxin and Thioredoxin Reductase from Entamoeba Histolytica and Prevailing Hypothesis of the Mechanism of Auranofin Action, J. Struct. Biol., 194 (2016) 180.
  • [25] Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E., Structure of a B-DNA dodecamer: conformation and dynamics, Proc. Natl. Acad. Sci., USA, 78 (1981) 2179-2183
  • [26] Protein Data Bank (PDB), Available at: https://www.rcsb.org/. Retrieved September 2021.
  • [27] Gaillard T., Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark, J. Chem. İnfo. Model., 58(8) (2018) 1697-1706.
  • [28] Nogueira V., Hay N., Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy, Clinic.Cancer Res., 19(16) (2013) 4309-4314.
  • [29] Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M., Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact., 160 (2006) 1-40.
  • [30] Wells, P.G., McCallum G.P., Chen C.S., Henderson J.T., Lee C.J., Perstin J., Preston T.J., Wiley M.J., Wong A.W., Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer, Toxicol Sci., 108 (2009) 4-18.
  • [31] Sosa V., Moliné T., Somoza R., Paciucci R., Kondoh H., LLeonart M., EOxidative stress and cancer: an overview, Age. Res. Rev., 12 (1) (2013) 376-390.
  • [32] Muri J., Heer S., Matsushita M., Pohlmeier L., Tortola L., Fuhrer T., Kopf M., The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation, Nat. Commun., 9(1) (2018), 1-16.
  • [33] Patenaude A., Murthy M.V., Mirault M.E., Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis, J. Bio. Chem., 279(26) (2004) 27302-27314.
  • [34] Knopf K.M., Murphy B.L., MacMillan S.N., Baskin J.M., Barr M.P., Boros E., Wilson J.J., In vitro anticancer activity and in vivo biodistribution of rhenium(I) tricarbonyl aqua complexes, J. Am. Chem. Soc., 139(40) (2017), 14302-14314.
  • [35] N. E. A. El-Naggar M. H., Hussein A., A. El-Sawah, Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity, Sci. Rep., 7 (2017) 10844.
  • [36] De Ruyck J., Brysbaert G., Blossey R., Lensink M. F., Molecular docking as a popular tool in drug design, an in silico travel, Advances and Applications in Bioinformatics and Chemistry, AABC, 9 (2016) 1.
  • [37] Torres P. H., Sodero A. C., Jofily P., Silva-Jr F. P., Key topics in molecular docking for drug design, Int. J. Mol. Sci., 20(18) (2019) 4574.
  • [38] Nakano S., Megro S. I., Hase T., Suzuki T., Isemura M., Nakamura Y., Ito S., Computational molecular docking and X-ray crystallographic studies of catechins in new drug design strategies, Molecules, 23(8) (2018) 2020.

Molecular docking studies of N-Heterocyclic Carbene molecules with Thioredoxin Reductase and DNA

Year 2021, Volume: 42 Issue: 3, 656 - 662, 24.09.2021
https://doi.org/10.17776/csj.901540

Abstract

Thioredoxin which is induced by thioredoxin reductase causes the proliferation of cancerous cells and metastasis due to its effects on cell growth, besides its regulatory effects on the amount of reactive oxygen species. One of the procedures recently used in cancer treatment is thioredoxin reductase inhibition. Different types of bioactivities of NHC and metal-NHC complexes have been studied and anti-cancer is one of these activities. In addition to in-vitro anticancer activity, molecular docking methods are also one of the important methods used in drug design. This method achieves foresight about future studies and the mechanisms that are difficult to analyze experimentally. In this study, previously synthesized and characterized [1-(2-methyl-2-propenyl)-3-(4-methylbenzyl) benzimidazolium]+ (1a) and [1-(2-methyl-2-propenyl)-3-(4-isopropylbenzyl) benzimidazolium]+ (1b) molecules and their Ag(I)-NHC complexes (2a and 2b) were investigated using molecular docking method for thioredoxin reductase. In addition, the interaction of these molecules with DNA was evaluated. 2b has the best binding energy of -8.95 kcal/mol with the region that comprised Ile10, Phe254, Ala38, Val41 of thioredoxin reductase. Also, ligands interacted with Cyt11, Gua10, Cyt9, and Thy8 while complexes interacted with Ade5, Ade6, Thy7, and Thy8 part of DNA.

References

  • [1] Siegel R.L., Miller K.D., Jemal A., Cancer statistics, 2019, CA: A Cancer Journal For Clinicians, 69(1) (2019) 7-34.
  • [2] Hayes J.D., Dinkova-Kostova A.T., Tew K.D., Oxidative stress in cancer, Cancer Cell, 38(2) (2020) 67-197.
  • [3] Milkovic L., Cipak Gasparovic A., Cindric M., Mouthuy P.A., Zarkovic N., Short overview of ROS as cell function regulators and their implications in therapy concepts, Cells, 8(8) (2019) 793.
  • [4] Zhu J., Thompson C.B., Metabolic regulation of cell growth and proliferatio, Nat. Rev. Mol. Cell Bio., 20(7) (2019) 436-450.
  • [5] Sies H., In Oxidative stress and vascular disease, Boston: Springer, (2000) 1-8.
  • [6] Arnér E.S., Holmgren A., Physiological functions of thioredoxin and thioredoxin reductase, Eur.J. Biochem., 267(20) (2000) 6102-6109.
  • [7] Lu J., Holmgren A., Thioredoxin system in cell death progression, Antioxid. Redox Signal.,17(12) (2012) 1738-1747.
  • [8] Gromer S., Urig S., Becker K., The thioredoxin system from science to clinic, Med. Res. Rev., 24(1) (2004) 40-89.
  • [9] Koharyova M., Kolarova M., Oxidative stress and thioredoxin system, Gen. Physiol. Biophys., 27(2) (2008) 71-84.
  • [10] Tonissen K.F., Di Trapani G., Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy, Mol. Nutri. Food Res., 53(1) (2009) 87-103.
  • [11] Holmgren A., Lu J., Thioredoxin and thioredoxin reductase: current research with special reference to human disease, Biochem. Biophys. Res. Commun., 396(1) (2010) 120-124.
  • [12] Zhang J., Li X., Han X., Liu R., Fang J., Targeting the thioredoxin system for cancer therapy, Trends Pharmacol. Sci., 38(9) (2017) 794-808.
  • [13] Lu J., Chew E.H., Holmgren A., Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide, Proceedings of the National Academy of Sciences, 104(30) (2007) 12288-12293.
  • [14] Qiu X., Liu Z., Shao W.Y., Liu X., Jing D.P., Yu Y.J., Gu L.Q., Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors, Bioorg. Med. Chem.,16(17) (2008) 8035-8041.
  • [15] Urig S., Becker K., On the potential of thioredoxin reductase inhibitors for cancer therapy, In Seminars in cancer biology, Elsevier, 16(6) (2006) 452-465.
  • [16] Saturnino C., Barone I., Iacopetta D., Mariconda A., Sinicropi M. S., Rosano C., Andò S., N-heterocyclic carbene complexes of silver and gold as novel tools against breast cancer progression, Future Med. Chem., 8(18) (2016) 2213-2229.
  • [17] Oehninger L., Rubbiani R., Ott I., N-Heterocyclic carbene metal complexes in medicinal chemistry, Dalton Trans., 42(10) (2013) 3269-3284.
  • [18] Jalal M., Hammouti B., Touzani R., Aouniti A., Ozdemir I., Metal-NHC heterocycle complexes in catalysis and biological applications: Systematic review, Materials Today: Proceedings, 31 (2020) 122-129.
  • [19] Vellé A., Maguire R. C., Kavanagh K., Sanz Miguel, P., Montagner, D., Steroid-Au(I)-NHC Complexes: Synthesis and Antibacterial Activity, ChemMedChem., 12(11) (2017) 841-844.
  • [20] Slimani I., Mansour L., Abutaha N., Harrath A. H., Al-Tamimi J., Gürbüz N., Özdemir İ., Hamdi N., Synthesis, structural characterization of silver(I)-NHC complexes and their antimicrobial, antioxidant and antitumor activities, J. King Saud Univ. Sci., 32(2) (2020) 1544-1554.
  • [21] Şahin-Bölükbaşı S., Şahin N., Novel Silver-NHC complexes: Synthesis and anticancer properties, J. Organomet.Chem., 891 (2019) 78-84.
  • [22] Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA quantum chemistry program package, The J. Chem. Phys., 152(22) (2020) 224108.
  • [23] Neese F., Software update: the ORCA program system, version 4.0., Wiley Interdisciplinary Reviews: Comput. Mol. Sci., 8(1) (2018) e1327.
  • [24] Parsonage D., Sheng F., Hirata K., Debnath A., Mckerrow J.H., Reed S.L., Abagyan R., Poole L.B., Podust L.M., X-Ray Structures of Thioredoxin and Thioredoxin Reductase from Entamoeba Histolytica and Prevailing Hypothesis of the Mechanism of Auranofin Action, J. Struct. Biol., 194 (2016) 180.
  • [25] Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E., Structure of a B-DNA dodecamer: conformation and dynamics, Proc. Natl. Acad. Sci., USA, 78 (1981) 2179-2183
  • [26] Protein Data Bank (PDB), Available at: https://www.rcsb.org/. Retrieved September 2021.
  • [27] Gaillard T., Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark, J. Chem. İnfo. Model., 58(8) (2018) 1697-1706.
  • [28] Nogueira V., Hay N., Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy, Clinic.Cancer Res., 19(16) (2013) 4309-4314.
  • [29] Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M., Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact., 160 (2006) 1-40.
  • [30] Wells, P.G., McCallum G.P., Chen C.S., Henderson J.T., Lee C.J., Perstin J., Preston T.J., Wiley M.J., Wong A.W., Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer, Toxicol Sci., 108 (2009) 4-18.
  • [31] Sosa V., Moliné T., Somoza R., Paciucci R., Kondoh H., LLeonart M., EOxidative stress and cancer: an overview, Age. Res. Rev., 12 (1) (2013) 376-390.
  • [32] Muri J., Heer S., Matsushita M., Pohlmeier L., Tortola L., Fuhrer T., Kopf M., The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation, Nat. Commun., 9(1) (2018), 1-16.
  • [33] Patenaude A., Murthy M.V., Mirault M.E., Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis, J. Bio. Chem., 279(26) (2004) 27302-27314.
  • [34] Knopf K.M., Murphy B.L., MacMillan S.N., Baskin J.M., Barr M.P., Boros E., Wilson J.J., In vitro anticancer activity and in vivo biodistribution of rhenium(I) tricarbonyl aqua complexes, J. Am. Chem. Soc., 139(40) (2017), 14302-14314.
  • [35] N. E. A. El-Naggar M. H., Hussein A., A. El-Sawah, Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity, Sci. Rep., 7 (2017) 10844.
  • [36] De Ruyck J., Brysbaert G., Blossey R., Lensink M. F., Molecular docking as a popular tool in drug design, an in silico travel, Advances and Applications in Bioinformatics and Chemistry, AABC, 9 (2016) 1.
  • [37] Torres P. H., Sodero A. C., Jofily P., Silva-Jr F. P., Key topics in molecular docking for drug design, Int. J. Mol. Sci., 20(18) (2019) 4574.
  • [38] Nakano S., Megro S. I., Hase T., Suzuki T., Isemura M., Nakamura Y., Ito S., Computational molecular docking and X-ray crystallographic studies of catechins in new drug design strategies, Molecules, 23(8) (2018) 2020.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Natural Sciences
Authors

Elvan Üstün 0000-0002-0587-7261

Neslihan Şahin 0000-0003-1498-4170

Publication Date September 24, 2021
Submission Date March 23, 2021
Acceptance Date September 6, 2021
Published in Issue Year 2021Volume: 42 Issue: 3

Cite

APA Üstün, E., & Şahin, N. (2021). Molecular docking studies of N-Heterocyclic Carbene molecules with Thioredoxin Reductase and DNA. Cumhuriyet Science Journal, 42(3), 656-662. https://doi.org/10.17776/csj.901540