Research Article
BibTex RIS Cite

Sensitive electrochemical determination of Cefpirome in human urine using differential pulse voltammetry

Year 2021, Volume: 42 Issue: 3, 593 - 601, 24.09.2021
https://doi.org/10.17776/csj.900483

Abstract

Cefpirome, which is a fourth-generation cephalosporin, was analyzed for the first time at a glassy carbon electrode using differential pulse voltammetry in this novel method. Different experimental conditions were optimized, such as pH and electrolyte type, to achieve a high peak current. Under the optimum conditions, the oxidation of cefpirome exhibited diffusion-controlled process depending on pH. Cefpirome was electrochemically determined at the linear range between 2-200 µM, and the detection limit was found as 0.167 µM in pH 4.7 acetate buffer solution. Analysis results showed that the proposed electrochemical method could be used for the determination of cefpirome in human urine samples. A linear relationship has been obtained in the concentration range of 2-10 µM. At the same time, the detection limit was found as 0.101 µM for cefpirome in human urine. Moreover, to check the selectivity of the proposed method, the effect of some interference species, including ascorbic acid, uric acid, dopamine, glucose, 〖"Na" 〗^"+" , "K" ^"+" , 〖"Ca" 〗^"+2" , 〖"NO" 〗_"3" ^"-" , have also been investigated. As a result, a simple, sensitive, reproducible, no time-consuming, and more environmentally friendly method was developed when compared to the literature studies.

Supporting Institution

Ankara University

Project Number

18B0237001

Thanks

The authors would like to thank the Ankara University Scientific Research Projects Commission for financial support (Project No: 18B0237001).

References

  • [1] Nawaz M., Arayne M. S., Sultana N., Abbas H. F., Investigation of interaction studies of Cefpirome with ACE-Inhibitors in various buffers, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 137 (2015) 1050–1054.
  • [2] Kong X. X., Jiang J. L., Qiao B., Liu H., Cheng J. S., Yuan Y. J., The biodegradation of Cefuroxime, Cefotaxime and Cefpirome by the Synthetic Consortium with Probiotic Bacillus Clausii and investigation of their potential biodegradation pathways, Sci. Total Environ., 651 (2019) 271–280.
  • [3] Zalewski P., Skibiński R., Szymanowska-Powałowska D., Piotrowska H., Kozak M., Pietralik Z., Bednarski W., Cielecka-Piontek J., The Radiolytic Studies of Cefpirome Sulfate in the solid state, J. Pharm. Biomed. Anal., 118 (2016) 410–416.
  • [4] Jain R., Vikas, Voltammetric Determination of Cefpirome at Multiwalled Carbon Nanotube modified Glassy Carbon Sensor based electrode in bulk form and Pharmaceutical formulation, Colloids Surfaces B. Biointerfaces, 87(2) (2011) 423–426.
  • [5] Hong Y. H., Xu X. L., Li W. Q., Xu B. Z., Wu H. Q., Cheng Y., Chen H., Zhang B. S., Zhang F., A high-accuracy screening method of 44 Cephalosporins in meat using liquid Chromatography Quadrupole-Orbitrap hybrid mass spectrometry, Anal. Methods, 9(46) (2017) 6534–6548
  • [6] Li W., Shen H., Hong Y., Zhang Y., Yuan F., Zhang F., Simultaneous determination of 22 Cephalosporins drug residues in Pork Muscle using liquid Chromatography-Tandem mass spectrometry, J. Chromatogr. B. Anal. Technol. Biomed. Life Sci., 1022 (2016) 298–307.
  • [7] Zalewski, P., Skibiński R., Cielecka-Piontek J., Bednarek-Rajewska K., Development and validation of stability-indicating HPLC method for determination of Cefpirome Sulfate, Acta Pol. Pharm., 71(5) (2014) 731-736.
  • [8] Breilh D., Lavallee C., Fratta A., Ducint D., Cony-Makhoul P., Saux M. C., Determination of Cefepime and Cefpirome in human serum by high-performance liquid Chromatography using an ultrafiltration for antibiotics serum extraction, J. Chromatogr. B Biomed. Sci. Appl., 734(1) (1999) 121–127.
  • [9] Kearns G.L., Johnson V.A., Hendry I.R., Wells T.G., Microanalytical high-performance liquid Chromatographic assay for Cefpirome in human milk and Urine, J. Chromatogr., 574(2) (1992) 356-60.
  • [10] Elghobashy M. R., Bebawy L. I., Abbas S. S., and Shokry R. F., Stability-indicating HPLC and RP-TLC determination of Cefpirome Sulfate with kinetic study, Chromatographia, 76 (17–18) (2013) 1141–1151.
  • [11] Watanabe E., Review of Sample Preparation Methods for Chromatographic analysis of Neonicotinoids in agricultural and environmental matrices: from classical to state-of-the-art methods, J. Chromatogr. A., 462042 (2021).
  • [12] Mattrey F. T., Makarov A. A., Regalado E. L., Bernardoni F., Figus M., Hicks M. B., Zheng J., Wang L., Schafer W., Antonucci V., Hamilton S., Zawatzky K., and Welch C.J., Current challenges and future prospects in Chromatographic method development for pharmaceutical research, TrAC - Trends Analyt Chem, 95 (2017) 36–46.
  • [13] Tobiszewski M., Namieśnik J., Direct Chromatographic methods in the context of green analytical chemistry, TrAC - Trends Analyt. Chem., 35 (2012) 67–73.
  • [14] Ganjali M. R., Gupta V. K., Faridbod F., Norouzi P., Electrochemical Determination of Lanthanides Series., In: Ganjali M. R., Gupta V. K., Faridbod F., Norouzi P., (Eds). In Lanthanides Series Determination by Various Analytical Methods., Amsterdam: Elsevier, (2016).
  • [15] Glasscott M. W., Vannoy K. J., Iresh Fernando P.U.A., Kosgei G. K., Moores L. C., Dick J. E., Electrochemical sensors for the detection of Fentanyl and its analogs: foundations and recent advances, TrAC - Trends Analyt. Chem., 132 (2020) 16037.
  • [16] Meenakshi S., Rama R., Pandian K., Gopinath S.C.B., Modified electrodes for electrochemical determination of Metronidazole in drug formulations and biological samples: An overview, Microchem. J., 165 (2021) 106151.
  • [17] Boumya W., Taoufik N., Achak M., Bessbousse H., Elhalil A., Barka N., Electrochemical sensors and biosensors for the determination of diclofenac in pharmaceutical, biological and water samples, Talanta, 3 (2021) 100026.
  • [18] Boumya W., Taoufık N., Achak M., Barka N. Chemically modified carbon-based electrodes for the determination of Paracetamol in drugs and biological samples, J. Pharm. Anal., 11(2) (2020) 138-154.
  • [19] Li T., Xu J., Zhao L., Shen S., Yuan M., Liu W., Tu Q., Yu R., Wang J., Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of Acetaminophen, Talanta, 159 (2016) 356–364.
  • [20] ICH Expert Working Group, ICH guideline Q1A(R2) stability testing of new drug substances and products, Int. Conf. Harmon., 24 (2003).
  • [21] Strenkoski L.C., Nix D.E., Cefpirome clinical pharmacokinetics, Clin Pharmacokinet., 25(1993) 263-273.
  • [22] Deepa S., Swamy B. E. K., Pai K. V. A., Surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of Doxorubicin and Dacarbazine its applications: a voltammetric study, J. Electroanal. Chem., 879 (2020) 114748.
  • [23] Kurbanoglu S., Uslu B., Ozkan S.A., Validation of Analytical Methods for the Assessment of Hazards in Food., In: Grumezescu A. M., Holban A. M., (Eds). Food Safety and Preservation, Modern Biological Approaches to Improving Consumer Health., London: Academic Press, 2018.
  • [24] Dogan-Topal B., Uslu B., Ozkan S. A., Voltammetric studies on the hiv-1 inhibitory drug efavirenz: the interaction between DsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode, Biosens. Bioelectron., 24(8) (2009) 2358–2364.
Year 2021, Volume: 42 Issue: 3, 593 - 601, 24.09.2021
https://doi.org/10.17776/csj.900483

Abstract

Project Number

18B0237001

References

  • [1] Nawaz M., Arayne M. S., Sultana N., Abbas H. F., Investigation of interaction studies of Cefpirome with ACE-Inhibitors in various buffers, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 137 (2015) 1050–1054.
  • [2] Kong X. X., Jiang J. L., Qiao B., Liu H., Cheng J. S., Yuan Y. J., The biodegradation of Cefuroxime, Cefotaxime and Cefpirome by the Synthetic Consortium with Probiotic Bacillus Clausii and investigation of their potential biodegradation pathways, Sci. Total Environ., 651 (2019) 271–280.
  • [3] Zalewski P., Skibiński R., Szymanowska-Powałowska D., Piotrowska H., Kozak M., Pietralik Z., Bednarski W., Cielecka-Piontek J., The Radiolytic Studies of Cefpirome Sulfate in the solid state, J. Pharm. Biomed. Anal., 118 (2016) 410–416.
  • [4] Jain R., Vikas, Voltammetric Determination of Cefpirome at Multiwalled Carbon Nanotube modified Glassy Carbon Sensor based electrode in bulk form and Pharmaceutical formulation, Colloids Surfaces B. Biointerfaces, 87(2) (2011) 423–426.
  • [5] Hong Y. H., Xu X. L., Li W. Q., Xu B. Z., Wu H. Q., Cheng Y., Chen H., Zhang B. S., Zhang F., A high-accuracy screening method of 44 Cephalosporins in meat using liquid Chromatography Quadrupole-Orbitrap hybrid mass spectrometry, Anal. Methods, 9(46) (2017) 6534–6548
  • [6] Li W., Shen H., Hong Y., Zhang Y., Yuan F., Zhang F., Simultaneous determination of 22 Cephalosporins drug residues in Pork Muscle using liquid Chromatography-Tandem mass spectrometry, J. Chromatogr. B. Anal. Technol. Biomed. Life Sci., 1022 (2016) 298–307.
  • [7] Zalewski, P., Skibiński R., Cielecka-Piontek J., Bednarek-Rajewska K., Development and validation of stability-indicating HPLC method for determination of Cefpirome Sulfate, Acta Pol. Pharm., 71(5) (2014) 731-736.
  • [8] Breilh D., Lavallee C., Fratta A., Ducint D., Cony-Makhoul P., Saux M. C., Determination of Cefepime and Cefpirome in human serum by high-performance liquid Chromatography using an ultrafiltration for antibiotics serum extraction, J. Chromatogr. B Biomed. Sci. Appl., 734(1) (1999) 121–127.
  • [9] Kearns G.L., Johnson V.A., Hendry I.R., Wells T.G., Microanalytical high-performance liquid Chromatographic assay for Cefpirome in human milk and Urine, J. Chromatogr., 574(2) (1992) 356-60.
  • [10] Elghobashy M. R., Bebawy L. I., Abbas S. S., and Shokry R. F., Stability-indicating HPLC and RP-TLC determination of Cefpirome Sulfate with kinetic study, Chromatographia, 76 (17–18) (2013) 1141–1151.
  • [11] Watanabe E., Review of Sample Preparation Methods for Chromatographic analysis of Neonicotinoids in agricultural and environmental matrices: from classical to state-of-the-art methods, J. Chromatogr. A., 462042 (2021).
  • [12] Mattrey F. T., Makarov A. A., Regalado E. L., Bernardoni F., Figus M., Hicks M. B., Zheng J., Wang L., Schafer W., Antonucci V., Hamilton S., Zawatzky K., and Welch C.J., Current challenges and future prospects in Chromatographic method development for pharmaceutical research, TrAC - Trends Analyt Chem, 95 (2017) 36–46.
  • [13] Tobiszewski M., Namieśnik J., Direct Chromatographic methods in the context of green analytical chemistry, TrAC - Trends Analyt. Chem., 35 (2012) 67–73.
  • [14] Ganjali M. R., Gupta V. K., Faridbod F., Norouzi P., Electrochemical Determination of Lanthanides Series., In: Ganjali M. R., Gupta V. K., Faridbod F., Norouzi P., (Eds). In Lanthanides Series Determination by Various Analytical Methods., Amsterdam: Elsevier, (2016).
  • [15] Glasscott M. W., Vannoy K. J., Iresh Fernando P.U.A., Kosgei G. K., Moores L. C., Dick J. E., Electrochemical sensors for the detection of Fentanyl and its analogs: foundations and recent advances, TrAC - Trends Analyt. Chem., 132 (2020) 16037.
  • [16] Meenakshi S., Rama R., Pandian K., Gopinath S.C.B., Modified electrodes for electrochemical determination of Metronidazole in drug formulations and biological samples: An overview, Microchem. J., 165 (2021) 106151.
  • [17] Boumya W., Taoufik N., Achak M., Bessbousse H., Elhalil A., Barka N., Electrochemical sensors and biosensors for the determination of diclofenac in pharmaceutical, biological and water samples, Talanta, 3 (2021) 100026.
  • [18] Boumya W., Taoufık N., Achak M., Barka N. Chemically modified carbon-based electrodes for the determination of Paracetamol in drugs and biological samples, J. Pharm. Anal., 11(2) (2020) 138-154.
  • [19] Li T., Xu J., Zhao L., Shen S., Yuan M., Liu W., Tu Q., Yu R., Wang J., Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of Acetaminophen, Talanta, 159 (2016) 356–364.
  • [20] ICH Expert Working Group, ICH guideline Q1A(R2) stability testing of new drug substances and products, Int. Conf. Harmon., 24 (2003).
  • [21] Strenkoski L.C., Nix D.E., Cefpirome clinical pharmacokinetics, Clin Pharmacokinet., 25(1993) 263-273.
  • [22] Deepa S., Swamy B. E. K., Pai K. V. A., Surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of Doxorubicin and Dacarbazine its applications: a voltammetric study, J. Electroanal. Chem., 879 (2020) 114748.
  • [23] Kurbanoglu S., Uslu B., Ozkan S.A., Validation of Analytical Methods for the Assessment of Hazards in Food., In: Grumezescu A. M., Holban A. M., (Eds). Food Safety and Preservation, Modern Biological Approaches to Improving Consumer Health., London: Academic Press, 2018.
  • [24] Dogan-Topal B., Uslu B., Ozkan S. A., Voltammetric studies on the hiv-1 inhibitory drug efavirenz: the interaction between DsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode, Biosens. Bioelectron., 24(8) (2009) 2358–2364.
There are 24 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Cem Erkmen 0000-0001-5944-3912

Burçin Bozal Palabıyık 0000-0002-2525-4192

Bengi Uslu 0000-0002-7327-4913

Project Number 18B0237001
Publication Date September 24, 2021
Submission Date March 21, 2021
Acceptance Date July 4, 2021
Published in Issue Year 2021Volume: 42 Issue: 3

Cite

APA Erkmen, C., Bozal Palabıyık, B., & Uslu, B. (2021). Sensitive electrochemical determination of Cefpirome in human urine using differential pulse voltammetry. Cumhuriyet Science Journal, 42(3), 593-601. https://doi.org/10.17776/csj.900483