Research Article
BibTex RIS Cite

Some old 2-(4-(Aryl)- thiazole-2-yl)-3a,4,7,7a-tetrahydro-1H-4,7-tethanoisoindole-1,3(2H)-dione derivatives: Synthesis, inhibition effects and molecular docking studies on Aldose reductase and α-Glycosidase

Year 2021, Volume: 42 Issue: 3, 553 - 564, 24.09.2021
https://doi.org/10.17776/csj.897800

Abstract

Utilizing the simple chromatic techniques, Aldose reductase (AR) was derived from sheep liver. In addition, α-glycosidase from Saccharomyces cerevisiae was used as the enzyme. It was determined the interactions between compounds and the enzymes. Molecular docking method used to compare biological activity values of molecules against enzymes.
In the current study, the inhibition effect of synthetic isoindol-substitute thiazole derivatives (3a-f) on AR, and α-glycosidase enzymes was studied. In the thiazole series, compound 3b (Ki: 9.70±4.72 M) showed a maximum inhibitory impact towards AR while compound 3f (Ki: 44.40±17.18 M) showed a lowest inhibitory impact towards AR. It was investigated potent inhibition profiles with Ki values in the range of 24.54±6.92–44.25±10.34 M against α-glycosidase. Theoretical results were found consistent with experimental results.
Acting as antidiabetic agents, these compounds have the potential to be the selective inhibitor of α-glycosidase and AR enzymes. The biological activities of the studied molecules against AR and α-glycosidase enzymes will be compared with molecular docking method. ADME analysis of the molecules will be done.

Supporting Institution

Sivas Cumhuriyet University

Project Number

RGD-020

Thanks

This work is supported by the Scientific Research Project Fund of Sivas Cumhuriyet University under the project number RGD-020. This research was made possible by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

References

  • [1] Abdel-Hafez A. A. M., Synthesis and anticonvulsant evaluation of N-substituted- isoindolinedione derivatives, Archives of Pharmacal Research, 27(5) (2004) 495-501.
  • [2] Hassanzadeh F., Rabbani M., Fasihi A., Hakimelah, G. H., Mohajeri M., Synthesis of phthalimide derivatives and evaluation of their anxiolytic activity, Research in Pharmaceutical Sciences, 2(1) (2008) 35-41.
  • [3] Wang J. J., Liu T. Y., Yin P. H., Wu C. W., Chern, Y. T., & Chi, C. W., Adamantyl maleimide induced changes in adhesion molecules and ROS are involved in apoptosis of human gastric cancer cells, Anticancer Research, 20(5A) (2000) 3067-3073.
  • [4] Ali I.A., Fathalla W., Synthesis of N-substituted-3, 4, 5, 6-tetrachlorophthalimide using trichloroacetimidate CC bond formation method, Arkivoc, 13 (2009) 193-199.
  • [5] Kant P., Saksena R. K., Synthesis and antimicrobial activity of some new 2-phenyl-3-p-(2'-methyl-3'-aryl-4'-oxo-thiazolin-2'-yl) phenyl quinazolin-4-ones and 2-phenyl-3-p-(1'-aryl-3-phthalimido-4'-methylazetidin-2'-one-2'-yl) phenyl-quinazolin-4-ones, Indian Journal Of Heterocyclic Chemistry, 12(4) (2003) 315-318.
  • [6] Kim J. N., Breaker R. R., Purine sensing by riboswitches, Biology of the Cell, 100(1) (2008) 1-11.
  • [7] Demir Y., Isık M., Gulcin I., Beydemir S., Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney, J. Biochem. Mol. Toxicol., 31(9) (2017) e21935.
  • [8] Demir Y., Taslimi P., Ozaslan M. S., Oztaskin N., Çetinkaya Y., Gulçin İ., Goksu S., Antidiabetic potential: in vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes, Archiv der Pharmazie, 351(12) (2018) 1800263.
  • [9] Türkeş C., Demir Y., Beydemir Ş., Anti-diabetic properties of calcium channel blockers: inhibition effects on aldose reductase enzyme activity, Applied Biochemistry and Biotechnology, 189(1) (2019) 318-329.
  • [10] Demir Y.; Ozaslan M.S.; Duran H.E.; Küfrevioğlu O.I.; Beydemir S., Inhibition effects of quinones on aldose reductase: antidiabetic properties, Environmental Toxicology and Pharmacology, 70 (2019) 103195.
  • [11] Aktaş A., Barut Celepci D., Kaya R., Taslimi P., Gök Y., Aygün M., İ. Gulçin İ., Novel morpholine liganded Pd-based N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure, antidiabetic and anticholinergic properties, Polyhedron., 159 (2019) 345-354.
  • [12] Gedikli M.A., Tüzün B., Aktaş A., Sayin K., Ataseven H., Do clarithromycin, azithromycin and their analogues effective in the treatment of COVID19?, Bratislavske Lekarske Listy, 122 (2021).
  • [13] Akta A., Tüzün B., Aslan R., Sayin K., Ataseven, H., New anti-viral drugs for the treatment of COVID-19 instead of favipiravir, Journal of Biomolecular Structure and Dynamics, (2020) 1-11.
  • [14] Kocyigit, U. M., Aslan, O. N., Gulcin, I., Temel, Y., & Ceylan, M., Synthesis and Carbonic Anhydrase Inhibition of Novel 2-(4-(Aryl)thiazole-2-yl)-3a,4,7,7a-tetrahydro-1H-4,7- methanoisoindole-1,3(2H)-dione Derivatives, Arch Pharm Chem Life Sci, 349 (2016) 955–963.
  • [15] Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR, Biomed Chromatogr., 27 (2017) 148-155.
  • [16] Cerelli, M.J.; Curtis, D.L.; Dunn, J.P.; Nelson, P.H.; Peak, T.M.; Waterbury, LD., Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids, J Med Chem., 29 (1986) 2347–51.
  • [17] Aslan, H.E.; Beydemir, S., Phenolic compounds: The inhibition effect on polyol pathway enzymes, Chem. Biol. Interact., 266 (2017) 47-55.
  • [18] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
  • [19] Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227 (1970) 680–685.
  • [20] Demir, Y.; Beydemir, S., Purification, refolding, and characterization of recombinant human paraoxonase-1, Turk. J. Chem., 39 (2015) 764–776.
  • [21] Ceylan, H., Demir, Y., & Beydemir, Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study, Protein and Peptide Letters, 26(5) (2019) 364-370.
  • [22] Lineweaver H., Burk D., The determination of enzyme dissociation constants, J. Am. Chem. Soc., 56 (1934) 658–666.
  • [23] Tüzün B., Examination of anti-oxidant properties and molecular docking parameters of some compounds in human body, Turkish Computational and Theoretical Chemistry, 4(2) (2020) 76-87.
  • [24] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato H., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnerberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T,. Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Nega R., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Daprich S., Daniels A.D., Farkas A, Foreaman JB, Ortiz JV, Cioslowski J, Fox DJ., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, (2009).
  • [25] Schrodinger L., Small-Molecule Drug Discovery Suite (2019-4).
  • [26] Zheng X., Zhang L., Chen W., Chen Y., Xie W., Hu X., Chem.Med.Chem., 7(11) (2012) 1921-1923.
  • [27] Lovering A.L., Lee S.S., Kim Y.W., Withers S.G., Strynadka, N.C., Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate, Journal of Biological Chemistry, 280(3) (2005) 2105-2115.
  • [28] Schrödinger Release 2019-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2019.
  • [29] Schrödinger Release 2019-4: LigPrep, Schrödinger, LLC, New York, NY, 2019.
  • [30] Taslimi P., Turhan K., Türkan F., Karaman H. S., Turgut Z., Gulcin İ., Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives: Synthetic analogues for the treatment of Alzheimer's disease and diabetes mellitus, Bioorganic Chemistry, 97 (2020) 103647.
  • [31] Schrödinger Release 2020-1: QikProp, Schrödinger, LLC, New York, NY, 2020.
  • [32] Patil K.K., Gacche R.N., Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies, Int. J. Biol. Macromol., 98 (2017) 730-738.
  • [33] Stefek M.; Snirc V., Djoubissie P.O., Majekova M., Demopoulos V., Rackova L., Bezakova Z., Karasu C., Carbone V., El-Kabbani O., Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling, Bioorg Med Chem., 16 (2018) 4908-4920.
  • [34] Fatmawati S., Ersam T., Shimizu K., The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn, Phytomedicine, 22 (2015) 49-51.
  • [35] Ali S., Saeed A., Abbas N., Shahid M., Bolte M., Iqbal, J., Design, synthesis and molecular modelling of novel methyl[4-oxo-2- (aroylimino)-3-(substituted phenyl)thiazolidin-5-ylidene]acetates as potent and selective aldose reductase inhibitors, Med. Chem. Commun., 3 (2012) 1428.
  • [36] Taslimi P., Aslan H.E., Demir Y., Oztaskin N., Maraş A., Gulçin İ., Beydemir S., Goksu S., Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia, Int. J. Biol. Macromol., 119 (2018) 857-863.
  • [37] Gulçin İ., Taslimi P., Aygün A., Sadeghian N., Bastem E., Kufrevioglu O.I., Turkan F., Şen F., Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes, Int. J.. Biol. Macromol., 119 (2018) 741-746.
  • [38] Chun H.S., Chang H.B., Kwon YI., Yang H.C., Characterization of an α-glucosidase inhibitor produced by Streptomyces sp. CK-4416, J. Microbiol. Biotechnol., 11 (2001) 389-393.
  • [39] Taslimi P., Akıncıoğlu H., Gulçin I., Synephrine and phenylephrine act as α-amylase, α-glycosidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors, J. Biochem. Mol. Toxicol., 31(11) (2017) e21973.
  • [40] Koçyiğit Ü. M., Taslim P., Tüzün, B., Yakan H., Muğlu H., Güzel E., 1, 2, 3-Triazole substituted phthalocyanine metal complexes as potential inhibitors for anticholinesterase and antidiabetic enzymes with molecular docking studies, Journal of Biomolecular Structure and Dynamics, (2020) 1-11.
Year 2021, Volume: 42 Issue: 3, 553 - 564, 24.09.2021
https://doi.org/10.17776/csj.897800

Abstract

Basit kromatik teknikler kullanılarak Aldoz redüktaz AR, koyun karaciğerinden elde edildi. Ek olarak, Saccharomyces cerevisiae'den elde edilen a-glikosidaz enzim olarak kullanıldı. Bileşikler ve enzimler arasındaki etkileşimler belirlendi. Moleküllerin biyolojik aktivite değerlerini enzimlerle karşılaştırmak için kullanılan moleküler yerleştirme yöntemi.
Bu çalışmada, sentetik izoindol ikame tiyazol türevlerinin (3a-f) aldoz redüktaz ve α-glikozidaz enzimleri üzerindeki inhibisyon etkisi incelenmiştir. Tiyazol serisinde, bileşik 3b (Ki: 9.70 ± 4.72 M), AR'ye karşı maksimum bir inhibitör etki gösterirken, bileşik 3f (Ki: 44.40 ± 17.18 M), AR'ye karşı en düşük bir inhibitör etki gösterdi. Α-glikozidaza karşı Ki değerleri 24.54 ± 6.92–44.25 ± 10.34 M aralığında olan güçlü inhibisyon profilleri araştırıldı. Teorik sonuçlar deneysel sonuçlarla uyumlu bulundu.
Antidiyabetik maddeler olarak hareket eden bu bileşikler, AR ve a-glikosidaz enzimlerinin seçici inhibitörü olma potansiyeline sahiptir. Çalışılan moleküllerin Aldoz redüktaz ve α-glikosidaz enzimlerine karşı biyolojik aktiviteleri moleküler yerleştirme yöntemi ile karşılaştırılacaktır. Moleküllerin ADME analizi (Absorpsiyon, dağılım, metabolizma, atılım ve toksisite) yapılacaktır.

Project Number

RGD-020

References

  • [1] Abdel-Hafez A. A. M., Synthesis and anticonvulsant evaluation of N-substituted- isoindolinedione derivatives, Archives of Pharmacal Research, 27(5) (2004) 495-501.
  • [2] Hassanzadeh F., Rabbani M., Fasihi A., Hakimelah, G. H., Mohajeri M., Synthesis of phthalimide derivatives and evaluation of their anxiolytic activity, Research in Pharmaceutical Sciences, 2(1) (2008) 35-41.
  • [3] Wang J. J., Liu T. Y., Yin P. H., Wu C. W., Chern, Y. T., & Chi, C. W., Adamantyl maleimide induced changes in adhesion molecules and ROS are involved in apoptosis of human gastric cancer cells, Anticancer Research, 20(5A) (2000) 3067-3073.
  • [4] Ali I.A., Fathalla W., Synthesis of N-substituted-3, 4, 5, 6-tetrachlorophthalimide using trichloroacetimidate CC bond formation method, Arkivoc, 13 (2009) 193-199.
  • [5] Kant P., Saksena R. K., Synthesis and antimicrobial activity of some new 2-phenyl-3-p-(2'-methyl-3'-aryl-4'-oxo-thiazolin-2'-yl) phenyl quinazolin-4-ones and 2-phenyl-3-p-(1'-aryl-3-phthalimido-4'-methylazetidin-2'-one-2'-yl) phenyl-quinazolin-4-ones, Indian Journal Of Heterocyclic Chemistry, 12(4) (2003) 315-318.
  • [6] Kim J. N., Breaker R. R., Purine sensing by riboswitches, Biology of the Cell, 100(1) (2008) 1-11.
  • [7] Demir Y., Isık M., Gulcin I., Beydemir S., Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney, J. Biochem. Mol. Toxicol., 31(9) (2017) e21935.
  • [8] Demir Y., Taslimi P., Ozaslan M. S., Oztaskin N., Çetinkaya Y., Gulçin İ., Goksu S., Antidiabetic potential: in vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes, Archiv der Pharmazie, 351(12) (2018) 1800263.
  • [9] Türkeş C., Demir Y., Beydemir Ş., Anti-diabetic properties of calcium channel blockers: inhibition effects on aldose reductase enzyme activity, Applied Biochemistry and Biotechnology, 189(1) (2019) 318-329.
  • [10] Demir Y.; Ozaslan M.S.; Duran H.E.; Küfrevioğlu O.I.; Beydemir S., Inhibition effects of quinones on aldose reductase: antidiabetic properties, Environmental Toxicology and Pharmacology, 70 (2019) 103195.
  • [11] Aktaş A., Barut Celepci D., Kaya R., Taslimi P., Gök Y., Aygün M., İ. Gulçin İ., Novel morpholine liganded Pd-based N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure, antidiabetic and anticholinergic properties, Polyhedron., 159 (2019) 345-354.
  • [12] Gedikli M.A., Tüzün B., Aktaş A., Sayin K., Ataseven H., Do clarithromycin, azithromycin and their analogues effective in the treatment of COVID19?, Bratislavske Lekarske Listy, 122 (2021).
  • [13] Akta A., Tüzün B., Aslan R., Sayin K., Ataseven, H., New anti-viral drugs for the treatment of COVID-19 instead of favipiravir, Journal of Biomolecular Structure and Dynamics, (2020) 1-11.
  • [14] Kocyigit, U. M., Aslan, O. N., Gulcin, I., Temel, Y., & Ceylan, M., Synthesis and Carbonic Anhydrase Inhibition of Novel 2-(4-(Aryl)thiazole-2-yl)-3a,4,7,7a-tetrahydro-1H-4,7- methanoisoindole-1,3(2H)-dione Derivatives, Arch Pharm Chem Life Sci, 349 (2016) 955–963.
  • [15] Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR, Biomed Chromatogr., 27 (2017) 148-155.
  • [16] Cerelli, M.J.; Curtis, D.L.; Dunn, J.P.; Nelson, P.H.; Peak, T.M.; Waterbury, LD., Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids, J Med Chem., 29 (1986) 2347–51.
  • [17] Aslan, H.E.; Beydemir, S., Phenolic compounds: The inhibition effect on polyol pathway enzymes, Chem. Biol. Interact., 266 (2017) 47-55.
  • [18] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
  • [19] Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227 (1970) 680–685.
  • [20] Demir, Y.; Beydemir, S., Purification, refolding, and characterization of recombinant human paraoxonase-1, Turk. J. Chem., 39 (2015) 764–776.
  • [21] Ceylan, H., Demir, Y., & Beydemir, Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study, Protein and Peptide Letters, 26(5) (2019) 364-370.
  • [22] Lineweaver H., Burk D., The determination of enzyme dissociation constants, J. Am. Chem. Soc., 56 (1934) 658–666.
  • [23] Tüzün B., Examination of anti-oxidant properties and molecular docking parameters of some compounds in human body, Turkish Computational and Theoretical Chemistry, 4(2) (2020) 76-87.
  • [24] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato H., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnerberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T,. Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Nega R., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Daprich S., Daniels A.D., Farkas A, Foreaman JB, Ortiz JV, Cioslowski J, Fox DJ., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, (2009).
  • [25] Schrodinger L., Small-Molecule Drug Discovery Suite (2019-4).
  • [26] Zheng X., Zhang L., Chen W., Chen Y., Xie W., Hu X., Chem.Med.Chem., 7(11) (2012) 1921-1923.
  • [27] Lovering A.L., Lee S.S., Kim Y.W., Withers S.G., Strynadka, N.C., Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate, Journal of Biological Chemistry, 280(3) (2005) 2105-2115.
  • [28] Schrödinger Release 2019-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2019.
  • [29] Schrödinger Release 2019-4: LigPrep, Schrödinger, LLC, New York, NY, 2019.
  • [30] Taslimi P., Turhan K., Türkan F., Karaman H. S., Turgut Z., Gulcin İ., Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives: Synthetic analogues for the treatment of Alzheimer's disease and diabetes mellitus, Bioorganic Chemistry, 97 (2020) 103647.
  • [31] Schrödinger Release 2020-1: QikProp, Schrödinger, LLC, New York, NY, 2020.
  • [32] Patil K.K., Gacche R.N., Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies, Int. J. Biol. Macromol., 98 (2017) 730-738.
  • [33] Stefek M.; Snirc V., Djoubissie P.O., Majekova M., Demopoulos V., Rackova L., Bezakova Z., Karasu C., Carbone V., El-Kabbani O., Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling, Bioorg Med Chem., 16 (2018) 4908-4920.
  • [34] Fatmawati S., Ersam T., Shimizu K., The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn, Phytomedicine, 22 (2015) 49-51.
  • [35] Ali S., Saeed A., Abbas N., Shahid M., Bolte M., Iqbal, J., Design, synthesis and molecular modelling of novel methyl[4-oxo-2- (aroylimino)-3-(substituted phenyl)thiazolidin-5-ylidene]acetates as potent and selective aldose reductase inhibitors, Med. Chem. Commun., 3 (2012) 1428.
  • [36] Taslimi P., Aslan H.E., Demir Y., Oztaskin N., Maraş A., Gulçin İ., Beydemir S., Goksu S., Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia, Int. J. Biol. Macromol., 119 (2018) 857-863.
  • [37] Gulçin İ., Taslimi P., Aygün A., Sadeghian N., Bastem E., Kufrevioglu O.I., Turkan F., Şen F., Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes, Int. J.. Biol. Macromol., 119 (2018) 741-746.
  • [38] Chun H.S., Chang H.B., Kwon YI., Yang H.C., Characterization of an α-glucosidase inhibitor produced by Streptomyces sp. CK-4416, J. Microbiol. Biotechnol., 11 (2001) 389-393.
  • [39] Taslimi P., Akıncıoğlu H., Gulçin I., Synephrine and phenylephrine act as α-amylase, α-glycosidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors, J. Biochem. Mol. Toxicol., 31(11) (2017) e21973.
  • [40] Koçyiğit Ü. M., Taslim P., Tüzün, B., Yakan H., Muğlu H., Güzel E., 1, 2, 3-Triazole substituted phthalocyanine metal complexes as potential inhibitors for anticholinesterase and antidiabetic enzymes with molecular docking studies, Journal of Biomolecular Structure and Dynamics, (2020) 1-11.
There are 40 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Parham Taslımı 0000-0002-3171-0633

Yeliz Demir

Hatice Esra Duran

Ümit Muhammet Koçyiğit

Burak Tüzün 0000-0002-0420-2043

Osman Nuri Aslan 0000-0002-1330-6194

Mustafa Ceylan

İlhami Gülçin 0000-0001-5993-1668

Project Number RGD-020
Publication Date September 24, 2021
Submission Date March 16, 2021
Acceptance Date September 20, 2021
Published in Issue Year 2021Volume: 42 Issue: 3

Cite

APA Taslımı, P., Demir, Y., Duran, H. E., Koçyiğit, Ü. M., et al. (2021). Some old 2-(4-(Aryl)- thiazole-2-yl)-3a,4,7,7a-tetrahydro-1H-4,7-tethanoisoindole-1,3(2H)-dione derivatives: Synthesis, inhibition effects and molecular docking studies on Aldose reductase and α-Glycosidase. Cumhuriyet Science Journal, 42(3), 553-564. https://doi.org/10.17776/csj.897800