Research Article
BibTex RIS Cite
Year 2021, Volume: 42 Issue: 2, 260 - 268, 30.06.2021
https://doi.org/10.17776/csj.834784

Abstract

References

  • [1] Verma A.K., Dash R.R., Bhunia P., A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manage, 93 (2012) 154-168.
  • [2] O’Neill C., Hawkes F.R., Hawkes D.L., Lourenco N.D., Pinheiro H.M., Delee W., Colour in textile effluents–sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 74 (1999) 1009-1018.
  • [3] Ince N.H., Tezcanli G., Treatability of textile dyebath effluents by advanced oxidation: preparation for reuse, Water Sci. Technol., 40 (1999) 183-190.
  • [4] Bharathi K.S., Ramesh S.T., Removal of dyes using agricultural waste as low-cost adsorbents: a review, Appl. Water Sci., 3 (2013) 773-790.
  • [5] Xu X.R., Li H.B., Wang W.H., Gu J.D., Decolorization of dyes and textile wastewater by potassium permanganate, Chemosphere, 59 (2005) 893-898.
  • [6] Salleh M.A.M., Mahmoud D.K., Karim W.A.W.A., Idris A., Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280 (2011) 1-13.
  • [7] Baban A., Yediler A., Avaz G., Hostede S.S., Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors, Bioresource Technol., 101 (2010) 1147-1152.
  • [8] Zahrim A.Y., Tizaoui C., Hilal N., Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review, Desalination, 266 (2011) 1-16.
  • [9] Khandegar V., Saroha A.K., Electrocoagulation for the treatment of textile industry effluent-a review, J. Environ. Manage., 128 (2013) 949-963.
  • [10] Bouafia-Chergui S., Oturan N., Khalaf H., Oturan M.A., A photo-Fenton treatment of a mixture of three cationic dyes, Procedia Eng., 33 (2012) 181-187.
  • [11] Baek M.H., Ijagbemi C.O., Kim D.S., Spectroscopic studies on the oxidative decomposition of Malachite Green using ozone, J. Environ. Sci. Health A., 45 (2010) 630-636.
  • [12] Martinez-Huitle C.A., Brillas E., Decontamination of wastewaters containing synthetic organic dyes byelectrochemical methods: A general review, Appl. Catal. B., 87 (2009) 105-145.
  • [13] Eren Z., Ince N.H., Acar F.N., Degradation of textile dyes, dyebaths and dyeing wastewater by homogeneous and heterogeneous sonophotolysis, J. Adv. Oxid. Technol., 13 (2010) 206-211.
  • [14] Gozmen B., Turabik M., Hesenov A., Photocatalytic degradation of Basic Red 46 and Basic Yellow 28 in single and binary mixture by UV/TiO2/periodate system, J. Hazard. Mater., 164 (2009) 1487-1495.
  • [15] Hazzaa R., Hussein M., Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones, Environ. Technol. Innov., 4 (2015) 36-51. [16] Abdulhameed A.S., Mohammad A.T., Jawad A.H., Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye, J. Clean. Prod., 232 (2019) 43–56.
  • [17] Bhatnagar A., Hogland W., Marques M., Sillanpaa M., An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J., 219 (2013) 499–511.
  • [18] Novais R.M., Carvalheiras J., Tobaldi D.M., Seabra M.P., Pullar R.C., Labrincha J.A., Synthesis of porous biomass fly ash-based geopolymer spheres for efficient removal of methylene blue from wastewaters, J. Clean. Prod., 207 (2019) 350–362.
  • [19] Wekoye J.N., Wanyonyi W.C., Wangila P.T., Tonui M.K., Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder, Environ. Chem. and Ecotoxicol., 2 (2020) 24–31.
  • [20] Adeyemo A.A., Adeouye I.O., Bello O.S., Adsorption of dyes using different types of clay: a review, Appl Water Sci., 7 (2017) 543-568.
  • [21] Sharma P., Kaur H., Sharma M., Sahore V., A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste, Environ. Monit. Assess., 183 (2011) 151-195.
  • [22] Foo K.Y., Hameed B.H., An overview of dye removal via activated carbon adsorption process, Desalin. Water Treat., 19 (2010) 255-274.
  • [23] Jawada A. H., Abdulhameed A.S., Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study, Surf. Interface., 18 (2020) 100422.
  • [24] Kausar A., Iqbal M., Javeda A., Aftab K., Nazli Z.H, Bhatti H.N., Nouren S., Dyes adsorption using clay and modified clay, A review J. Mol. Liq., 256 (2018) 395–407.
  • [25] Karagozoglu B., Tasdemir M., Demirbas E., Kobya M., The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies, J. Hazard. Mater., 147 (2007) 297-306.
  • [26] Sulak M.T., Demirbas E., Kobya M., Removal of Astrazon yellow 7GL from aqueous solutions by adsorption onto wheat bran, Bioresource Technol., 98 (2007) 2590-2598.
  • [27] Chien S.H., Clayton W.R., Application of elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (1980) 265-268.
  • [28] Khan T.A., Khan E.A., Shahjahan, Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite, Non-linear isotherm and kinetics modeling, Appl. Clay Sci., 107 (2015) 70-77.
  • [29] Naeimi S., Faghihian H., Modification and magnetization of MOF (HKUST-1) for removal of Sr2+ from aqueous solutions. Equilibrium, kinetic and thermodynamic modeling studies., Sep. Sci. Technol., 52 (18) (2017) 2899-2908.
  • [30] Cottet L., Almeida C.A.P., Naidek N., Viante M.F., Lopes M.C., Debacher N.A., Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media, Appl. Clay Sci., 95 (2014) 25-31.
  • [31] Salvestrini S., Leone V., Iovino P., Canzano S., Capasso S., Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms, J. Chem. Thermodyn., 68 (2014) 310–316.
  • [32] Es-sahbany H., Hsissou R., El Hachimi M.L., Allaoui M., Nkhili S., Elyoubi M.S., Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco), Mater Today Proc., 2021 in press.
  • [33] Mnasri-Ghnimi S., Frini-Srasra N., Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 179 (2019) 105151.
  • [34] Zhou Q., Gao Q., Luo W., Yan C., Ji Z., Duan P., One-step synthesis of aminofunctionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater, Colloid. Surf. A Physicochem. Eng. Asp., 470 (2015) 248–257.
  • [35] Ahmad R., Mirza A., Synthesis of guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye, J. Mol. Liq., 249 (2018) 805-814.
  • [36] Kausar A., Bhatti H.N., Adsorptive removal of uranium from wastewater: a review, J. Chem. Soc. Pak., 35 (2013) 1041-1052.
  • [37] Chen Z., Wang T., Jin X., Chen Z., Megharaj M., Naidu R., Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution, J. Colloid Interf. Sci., 398 (2013) 59-66.
  • [38] Ozcan A.S., Gok O., Ozcan A., Adsorption of lead(II) ions onto 8-hydroxy quinoline immobilized bentonite, J. Hazard. Mater., 161 (2009) 499-509.
  • [39] Khataee A.R., Vafaei F., Jannatkhah M., Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies, Int. Biodeter. Biodegr., 83 (2013) 33-40.
  • [40] Marungrueng K., Pavasant P., High performance biosorbent (Caulerpa lentillifera) for basic dye removal, Bioresource Technol., 98 (2007) 1567-1572.

Investigation of the adsorption of Astrazon Blue FGRL dye in synthetic wastewater using waste mine clay

Year 2021, Volume: 42 Issue: 2, 260 - 268, 30.06.2021
https://doi.org/10.17776/csj.834784

Abstract

In this investigation is aimed at the removal of Astrazon Blue FGRL (AB FGRL) (basic dye) from an aqueous solution using waste clay (MC) obtained from the gold mine area. The natural clay was characterized and identified using X-ray diffraction (XRD) analysis.Then, the contact time, adsorbent dosage, pH, initial dye concentration and temperature experiments were carried out in a batch system. The removal efficiency was found to be 97% at pH 7, 80 min, 30oC, 4 g/L MC dosage, 50 mg/L initial dye concentration. The adsorption data are applied to the Langmuir, Freundlich, and Temkin isotherm models. The maximum capacity of waste mine clay (MC) was found to be 191.75 mg/g. The pseudo-second-order kinetic models and Elovich kinetic model were used to examine the adsorption process of Astrazon Blue FGRL. The results of kinetic experiments were defined by the pseudo-second-order model point out a chemisorption reaction. The adsorption thermodynamics were investigated using parameters such as enthalpy change (∆Ho), Gibbs free energy change (∆Go) as well as entropy change (∆So). These calculations reveal that sorption of Astrozon Blue FGRL is endothermic, spontaneous and enthalpy driven. This work provides guidance for using of waste clay materials for applications in the adsorption removal of dye from aqueous solution.

References

  • [1] Verma A.K., Dash R.R., Bhunia P., A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manage, 93 (2012) 154-168.
  • [2] O’Neill C., Hawkes F.R., Hawkes D.L., Lourenco N.D., Pinheiro H.M., Delee W., Colour in textile effluents–sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 74 (1999) 1009-1018.
  • [3] Ince N.H., Tezcanli G., Treatability of textile dyebath effluents by advanced oxidation: preparation for reuse, Water Sci. Technol., 40 (1999) 183-190.
  • [4] Bharathi K.S., Ramesh S.T., Removal of dyes using agricultural waste as low-cost adsorbents: a review, Appl. Water Sci., 3 (2013) 773-790.
  • [5] Xu X.R., Li H.B., Wang W.H., Gu J.D., Decolorization of dyes and textile wastewater by potassium permanganate, Chemosphere, 59 (2005) 893-898.
  • [6] Salleh M.A.M., Mahmoud D.K., Karim W.A.W.A., Idris A., Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280 (2011) 1-13.
  • [7] Baban A., Yediler A., Avaz G., Hostede S.S., Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors, Bioresource Technol., 101 (2010) 1147-1152.
  • [8] Zahrim A.Y., Tizaoui C., Hilal N., Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review, Desalination, 266 (2011) 1-16.
  • [9] Khandegar V., Saroha A.K., Electrocoagulation for the treatment of textile industry effluent-a review, J. Environ. Manage., 128 (2013) 949-963.
  • [10] Bouafia-Chergui S., Oturan N., Khalaf H., Oturan M.A., A photo-Fenton treatment of a mixture of three cationic dyes, Procedia Eng., 33 (2012) 181-187.
  • [11] Baek M.H., Ijagbemi C.O., Kim D.S., Spectroscopic studies on the oxidative decomposition of Malachite Green using ozone, J. Environ. Sci. Health A., 45 (2010) 630-636.
  • [12] Martinez-Huitle C.A., Brillas E., Decontamination of wastewaters containing synthetic organic dyes byelectrochemical methods: A general review, Appl. Catal. B., 87 (2009) 105-145.
  • [13] Eren Z., Ince N.H., Acar F.N., Degradation of textile dyes, dyebaths and dyeing wastewater by homogeneous and heterogeneous sonophotolysis, J. Adv. Oxid. Technol., 13 (2010) 206-211.
  • [14] Gozmen B., Turabik M., Hesenov A., Photocatalytic degradation of Basic Red 46 and Basic Yellow 28 in single and binary mixture by UV/TiO2/periodate system, J. Hazard. Mater., 164 (2009) 1487-1495.
  • [15] Hazzaa R., Hussein M., Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones, Environ. Technol. Innov., 4 (2015) 36-51. [16] Abdulhameed A.S., Mohammad A.T., Jawad A.H., Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye, J. Clean. Prod., 232 (2019) 43–56.
  • [17] Bhatnagar A., Hogland W., Marques M., Sillanpaa M., An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J., 219 (2013) 499–511.
  • [18] Novais R.M., Carvalheiras J., Tobaldi D.M., Seabra M.P., Pullar R.C., Labrincha J.A., Synthesis of porous biomass fly ash-based geopolymer spheres for efficient removal of methylene blue from wastewaters, J. Clean. Prod., 207 (2019) 350–362.
  • [19] Wekoye J.N., Wanyonyi W.C., Wangila P.T., Tonui M.K., Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder, Environ. Chem. and Ecotoxicol., 2 (2020) 24–31.
  • [20] Adeyemo A.A., Adeouye I.O., Bello O.S., Adsorption of dyes using different types of clay: a review, Appl Water Sci., 7 (2017) 543-568.
  • [21] Sharma P., Kaur H., Sharma M., Sahore V., A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste, Environ. Monit. Assess., 183 (2011) 151-195.
  • [22] Foo K.Y., Hameed B.H., An overview of dye removal via activated carbon adsorption process, Desalin. Water Treat., 19 (2010) 255-274.
  • [23] Jawada A. H., Abdulhameed A.S., Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study, Surf. Interface., 18 (2020) 100422.
  • [24] Kausar A., Iqbal M., Javeda A., Aftab K., Nazli Z.H, Bhatti H.N., Nouren S., Dyes adsorption using clay and modified clay, A review J. Mol. Liq., 256 (2018) 395–407.
  • [25] Karagozoglu B., Tasdemir M., Demirbas E., Kobya M., The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies, J. Hazard. Mater., 147 (2007) 297-306.
  • [26] Sulak M.T., Demirbas E., Kobya M., Removal of Astrazon yellow 7GL from aqueous solutions by adsorption onto wheat bran, Bioresource Technol., 98 (2007) 2590-2598.
  • [27] Chien S.H., Clayton W.R., Application of elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (1980) 265-268.
  • [28] Khan T.A., Khan E.A., Shahjahan, Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite, Non-linear isotherm and kinetics modeling, Appl. Clay Sci., 107 (2015) 70-77.
  • [29] Naeimi S., Faghihian H., Modification and magnetization of MOF (HKUST-1) for removal of Sr2+ from aqueous solutions. Equilibrium, kinetic and thermodynamic modeling studies., Sep. Sci. Technol., 52 (18) (2017) 2899-2908.
  • [30] Cottet L., Almeida C.A.P., Naidek N., Viante M.F., Lopes M.C., Debacher N.A., Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media, Appl. Clay Sci., 95 (2014) 25-31.
  • [31] Salvestrini S., Leone V., Iovino P., Canzano S., Capasso S., Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms, J. Chem. Thermodyn., 68 (2014) 310–316.
  • [32] Es-sahbany H., Hsissou R., El Hachimi M.L., Allaoui M., Nkhili S., Elyoubi M.S., Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco), Mater Today Proc., 2021 in press.
  • [33] Mnasri-Ghnimi S., Frini-Srasra N., Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 179 (2019) 105151.
  • [34] Zhou Q., Gao Q., Luo W., Yan C., Ji Z., Duan P., One-step synthesis of aminofunctionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater, Colloid. Surf. A Physicochem. Eng. Asp., 470 (2015) 248–257.
  • [35] Ahmad R., Mirza A., Synthesis of guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye, J. Mol. Liq., 249 (2018) 805-814.
  • [36] Kausar A., Bhatti H.N., Adsorptive removal of uranium from wastewater: a review, J. Chem. Soc. Pak., 35 (2013) 1041-1052.
  • [37] Chen Z., Wang T., Jin X., Chen Z., Megharaj M., Naidu R., Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution, J. Colloid Interf. Sci., 398 (2013) 59-66.
  • [38] Ozcan A.S., Gok O., Ozcan A., Adsorption of lead(II) ions onto 8-hydroxy quinoline immobilized bentonite, J. Hazard. Mater., 161 (2009) 499-509.
  • [39] Khataee A.R., Vafaei F., Jannatkhah M., Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies, Int. Biodeter. Biodegr., 83 (2013) 33-40.
  • [40] Marungrueng K., Pavasant P., High performance biosorbent (Caulerpa lentillifera) for basic dye removal, Bioresource Technol., 98 (2007) 1567-1572.
There are 39 citations in total.

Details

Primary Language English
Subjects Environmental Sciences, Chemical Engineering
Journal Section Natural Sciences
Authors

Fuat Özyonar 0000-0001-6772-8010

Mehmet Kobya 0000-0001-5052-7220

Ülker Aslı Güler 0000-0002-9608-9745

Publication Date June 30, 2021
Submission Date December 2, 2020
Acceptance Date April 3, 2021
Published in Issue Year 2021Volume: 42 Issue: 2

Cite

APA Özyonar, F., Kobya, M., & Güler, Ü. A. (2021). Investigation of the adsorption of Astrazon Blue FGRL dye in synthetic wastewater using waste mine clay. Cumhuriyet Science Journal, 42(2), 260-268. https://doi.org/10.17776/csj.834784