Research Article
BibTex RIS Cite
Year 2021, Volume: 42 Issue: 2, 465 - 475, 30.06.2021
https://doi.org/10.17776/csj.719940

Abstract

References

  • [1] Özgan K., Karakaş A. İ., Daloğlu A.T., Hiperbolik soğutma kulelerinin deprem analizi, Pamukkale Üniversitesi Müh. Bilim Dergisi, 22(6) (2016) 433-441.
  • [2] Sabouri-Ghomi S., Kharrazi M. H. K., Javidan P. Effect of stiffening rings on buckling stability of RC hyperbolic cooling towers, Thin-walled structures, 44 (2) (2006) 152-158.
  • [3] Busch D., Harte R., Krätzig W.B., Montag U. New Natural Draft Cooling Tower of 200m of height, J. Engineering Structures, 24 (2002) 1509-1521.
  • [4] Zhao L., Ge Y., Kareem A., Fluctuating wind pressure distribution around full-scale cooling towers, Journal of Wind Engineering and Industrial Aerodynamics, 165 (2017) 34-45.
  • [5] Karakaş A.İ., Elastik zemine oturan kule tipi yapıların SAP 2000–OAPI kullanılarak yapısal analizi ve optimum tasarımı, PhD Thesis, Karadeniz Technical University, The Graduate School of Natural and Applied Sciences, 2017.
  • [6] Karakaş A.İ., Özgan K., Daloğlu A.T., A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load, Wind and Structures, 22(6) (2016) 617-633.
  • [7] Karakaş A.I., Özgan K., Daloğlu A. T., A Parametric study for free vibration analysis of hyperbolic cooling towers on elastic foundation using consistent FEM-Vlasov model., Arc Appl. Mech., 86 (2015) 869-882.
  • [8] Ghomi S.S., Kharrazi M.H.K., Reinforced Concrete Column-Supported Hyperboloid Cooling Tower Stability Assessment for Seismic Loads., ScientiatIronica, 12(2) (2005) 241-246.
  • [9] Yu Q, Gu X.L., Li Y. , Lin F., Collapse Mechanism of Reinforced Concrete Superlarge Cooling Towers Subjected to Strong Winds, J. Perform Constr. Facil., 31(6) (2017) 04017101.
  • [10] Murali G, Vardhan C. M. V. and Reddy B.V. P. K., Response of Cooling Towers to Wind Loads, ARPN Journal of Engineering and Applied Sciences, 7(1) (2012) 114-120.
  • [11] Greiner R., Derler P. Effect of imperfections on wind-loaded cylindrical shells, Thin-Walled Structures, 23 (1-4) (1995) 271-281.
  • [12] Afshari, F., and Dehghanpour, H., A Review Study On Cooling Towers; Types, Performance and Application, ALKU J. of Sci., Special Issue (2019) 1-10.
  • [13] Asadzadeh E., Alam M., Asadzadeh,S., Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations, Structural Engineering and Mechanics, 50(6) (2014) 797-816.
  • [14] Dehghanpour H., Afshari F.Yılmaz K., ABAQUS Modeling and Investigation of Nuclear Central Cooling Tower Reinforced by CFRP., ALKU J. Sci., Special Issue (2019) 59-70.
  • [15] ASCE 7-10, Minimum design loads for buildings and other structures, Reston, Virginia, American Society of Civil Engineers, (2010).
  • [16] Almási J., Approximated determination of cooling tower dimensions, Periodica Polytechnica Civil Engineering, 25 (1-2) (1981).
  • [17] Habibullah and Wilson, SAP 2000 User Manual, Computer Program, USA, Computers and Structures, Berkeley, (1998).
  • [18] Kanbur F.A., 500 Kw Enerji Kapasiteli Bir Rüzgâr Türbinin Çelik Kule Tasarımı, Yüksek Lisans Tezi, İnşaat Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014.
  • [19] Özlek C., ASCE 7-10, Eurocode 1-4 Ve Ts 498 Yönetmelikleri Kullanılarak Yapılara Etki Eden Rüzgar Yüklerinin Karşılaştırılması. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Fen Bilimleri Enstitüsü, 2015.
  • [20] İstanbul Yüksek Binalar Rüzgâr Yönetmeliği, İstanbul Büyükşehir Belediyesi İmar Müdürlüğü, İstanbul, Türkiye, 2009.
  • [21] Eurocode 1: Action on structures-General actions, EN 1991-1-4, 2002.
  • [22] Brown C.J., Nielsen J., Silos: Fundementals of Theory, Behaviour and Design, E&FN Spon, London, 1998.
  • [23] Pacific Earthquake Engineering Research (PEER) Center, PEER Strong Motion Database. Available at: http://peer.berkeley.edu. Retreived March, 2021.
  • [24] Clough, R.W., Penzien, J., Dynamics of Structures, New York: McGraw-Hill, (1975).
  • [25] Celep, Z., Yapı dinamiği. Beta Dağıtım, 2014.

Investigation of behavior of cooling tower structure under external loads

Year 2021, Volume: 42 Issue: 2, 465 - 475, 30.06.2021
https://doi.org/10.17776/csj.719940

Abstract

Cooling towers are high and thin structures which are widely used at the industry and nuclear facilities. These structures are built on column elements as reinforced concrete. Determining the behavior of the buildings affected by the dynamic loads such as wind and earthquake is very important in terms of preventing the loss of life and property. In this study, hyperbolic cooling with 117m height tower was examined and the behaviors of the structure in earthquake and wind effects were investigated. During the application of the wind load, 25m / sec wind velocity was applied and three ground motion records were applied to the structures in the course of the earthquake analysis. The wind load was calculated in accordance with the ASCE 7-10 standard and it was given as angular. As a result of the analysis, the values of the displacement and stress were obtained and examined. According to the results of the wind load analysis; As the height of the tower increases, the values of wind load increase and the displacement values occurring in the building increase. The values of displacement and stress vary angularly depending on angular wind load. It is seen that the highest values of displacement and stress values were obtained in Kobe earthquake. Displacement values were examined depending on the height and the largest displacement values were obtained at the top part.

References

  • [1] Özgan K., Karakaş A. İ., Daloğlu A.T., Hiperbolik soğutma kulelerinin deprem analizi, Pamukkale Üniversitesi Müh. Bilim Dergisi, 22(6) (2016) 433-441.
  • [2] Sabouri-Ghomi S., Kharrazi M. H. K., Javidan P. Effect of stiffening rings on buckling stability of RC hyperbolic cooling towers, Thin-walled structures, 44 (2) (2006) 152-158.
  • [3] Busch D., Harte R., Krätzig W.B., Montag U. New Natural Draft Cooling Tower of 200m of height, J. Engineering Structures, 24 (2002) 1509-1521.
  • [4] Zhao L., Ge Y., Kareem A., Fluctuating wind pressure distribution around full-scale cooling towers, Journal of Wind Engineering and Industrial Aerodynamics, 165 (2017) 34-45.
  • [5] Karakaş A.İ., Elastik zemine oturan kule tipi yapıların SAP 2000–OAPI kullanılarak yapısal analizi ve optimum tasarımı, PhD Thesis, Karadeniz Technical University, The Graduate School of Natural and Applied Sciences, 2017.
  • [6] Karakaş A.İ., Özgan K., Daloğlu A.T., A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load, Wind and Structures, 22(6) (2016) 617-633.
  • [7] Karakaş A.I., Özgan K., Daloğlu A. T., A Parametric study for free vibration analysis of hyperbolic cooling towers on elastic foundation using consistent FEM-Vlasov model., Arc Appl. Mech., 86 (2015) 869-882.
  • [8] Ghomi S.S., Kharrazi M.H.K., Reinforced Concrete Column-Supported Hyperboloid Cooling Tower Stability Assessment for Seismic Loads., ScientiatIronica, 12(2) (2005) 241-246.
  • [9] Yu Q, Gu X.L., Li Y. , Lin F., Collapse Mechanism of Reinforced Concrete Superlarge Cooling Towers Subjected to Strong Winds, J. Perform Constr. Facil., 31(6) (2017) 04017101.
  • [10] Murali G, Vardhan C. M. V. and Reddy B.V. P. K., Response of Cooling Towers to Wind Loads, ARPN Journal of Engineering and Applied Sciences, 7(1) (2012) 114-120.
  • [11] Greiner R., Derler P. Effect of imperfections on wind-loaded cylindrical shells, Thin-Walled Structures, 23 (1-4) (1995) 271-281.
  • [12] Afshari, F., and Dehghanpour, H., A Review Study On Cooling Towers; Types, Performance and Application, ALKU J. of Sci., Special Issue (2019) 1-10.
  • [13] Asadzadeh E., Alam M., Asadzadeh,S., Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations, Structural Engineering and Mechanics, 50(6) (2014) 797-816.
  • [14] Dehghanpour H., Afshari F.Yılmaz K., ABAQUS Modeling and Investigation of Nuclear Central Cooling Tower Reinforced by CFRP., ALKU J. Sci., Special Issue (2019) 59-70.
  • [15] ASCE 7-10, Minimum design loads for buildings and other structures, Reston, Virginia, American Society of Civil Engineers, (2010).
  • [16] Almási J., Approximated determination of cooling tower dimensions, Periodica Polytechnica Civil Engineering, 25 (1-2) (1981).
  • [17] Habibullah and Wilson, SAP 2000 User Manual, Computer Program, USA, Computers and Structures, Berkeley, (1998).
  • [18] Kanbur F.A., 500 Kw Enerji Kapasiteli Bir Rüzgâr Türbinin Çelik Kule Tasarımı, Yüksek Lisans Tezi, İnşaat Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014.
  • [19] Özlek C., ASCE 7-10, Eurocode 1-4 Ve Ts 498 Yönetmelikleri Kullanılarak Yapılara Etki Eden Rüzgar Yüklerinin Karşılaştırılması. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Fen Bilimleri Enstitüsü, 2015.
  • [20] İstanbul Yüksek Binalar Rüzgâr Yönetmeliği, İstanbul Büyükşehir Belediyesi İmar Müdürlüğü, İstanbul, Türkiye, 2009.
  • [21] Eurocode 1: Action on structures-General actions, EN 1991-1-4, 2002.
  • [22] Brown C.J., Nielsen J., Silos: Fundementals of Theory, Behaviour and Design, E&FN Spon, London, 1998.
  • [23] Pacific Earthquake Engineering Research (PEER) Center, PEER Strong Motion Database. Available at: http://peer.berkeley.edu. Retreived March, 2021.
  • [24] Clough, R.W., Penzien, J., Dynamics of Structures, New York: McGraw-Hill, (1975).
  • [25] Celep, Z., Yapı dinamiği. Beta Dağıtım, 2014.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Engineering Sciences
Authors

Asuman Işıl Çarhoğlu 0000-0003-2325-1788

Publication Date June 30, 2021
Submission Date April 27, 2020
Acceptance Date May 2, 2021
Published in Issue Year 2021Volume: 42 Issue: 2

Cite

APA Çarhoğlu, A. I. (2021). Investigation of behavior of cooling tower structure under external loads. Cumhuriyet Science Journal, 42(2), 465-475. https://doi.org/10.17776/csj.719940