Research Article
BibTex RIS Cite

Hydrogen evolution by ternary metal selenide at biomembrane-like soft interfaces

Year 2021, Volume: 42 Issue: 1, 13 - 21, 29.03.2021
https://doi.org/10.17776/csj.772412

Abstract

Two phase reactions are the analogy of biomembranes, which are polarized by Galvani potential difference at interface between two immiscible electrolyte solutions. Energy conversion reactions such as oxygen reduction reaction or hydrogen evolution reaction have been great drawn attention at soft interfaces due to the similarity of natural biochemical reactions. In this study, copper-based ternary metal selenide (copper tungsten selenide, Cu2WSe4) was first reported in the literature for hydrogen evolution reaction catalysis at the water/1,2-dichloroethane interface. The synthesized Cu2WSe4 catalyst is characterized by morphological and structural techniques. Catalytic activity of Cu2WSe4 at liquid–liquid interfaces by lipophilic decamethylferrocene as the sacrificial electron donor agent. This catalytic activity was tracked by four-electrode voltammetry at the water/1,2-dichloroethane interface and biphasic reactions monitored by gas chromatography. The rates of the hydrogen evolution reaction catalyzed by the Cu2WSe4 were found to be approximately 160-fold than the rate for the reaction performed in the absence of a catalyst.

Supporting Institution

Selçuk Üniversitesi

Project Number

19401163

Thanks

The author would like to thank you to Selcuk University Scientific Research Projects (Grant number: 19401163) for financial supports, as well as Assoc. Prof. Dr. Faruk Ozel and Prof. Dr. Imren Hatay Patir for the valuable guidance and contributions on the use of laboratory equipment.

References

  • [1] Chen X., Shen S., Guo L., Mao S.S., Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews, 110(11) (2010) 6503-6570.
  • [2] Jaramillo T.F., Jørgensen K.P., Bonde J., Nielsen J.H., Horch S., Chorkendorff I., Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts, Science, 317(5834) (2007) 100-102.
  • [3] Merki D., Hu X., Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts, Energy & Environmental Science, 4(10) (2011) 3878-3888.
  • [4] Morales-Guio C.G., Hu X., Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts, Accounts of Chemical Research, 47(8) (2014) 2671-2681.
  • [5] Voiry D., Yamaguchi H., Li J., Silva R., Alves D.C.B., Fujita T., Chen M., Asefa T., Shenoy V.B., Eda G., Chhowalla M., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, Nature Materials, 12 (2013) 850-855.
  • [6] Wang H., Kong D., Johanes P., Cha J.J., Zheng G., Yan H., Liu N., Cui Y., MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces, Nano Letters, 13(7) (2013) 3426-3433.
  • [7] Zou M., Zhang J., Zhu H., Du M., Wang Q., M. Zhang M., Zhang X., A 3D dendritic WSe2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution, Journal of Materials Chemistry A, 3(23) (2015) 12149-12153.
  • [8] Liu Z., Zhao H., Li N., Zhang Y., Zhang X., Du Y., Assembled 3D electrocatalysts for efficient hydrogen evolution: WSe2 layers anchored on graphene sheets, Inorganic Chemistry Frontiers, 3(2) (2016) 313-319.
  • [9] Wang X., Chen Y., Zheng B., Qi F., He J., Li Q., Li P., Zhang W., Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution, Journal of Alloys and Compounds, 691 (2017) 698-704.
  • [10] Velazquez J.M., Saadi F.H., Pieterick A.P., Spurgeon J.M., Soriaga M.P., Brunschwig B.S. , Lewis N.S., Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils, Journal of Electroanalytical Chemistry, 716 (2014) 45-48.
  • [11] Sun Y., Zhang X., Mao B., Cao M., Controllable selenium vacancy engineering in basal planes of mechanically exfoliated WSe2 monolayer nanosheets for efficient electrocatalytic hydrogen evolution, Chemical Communications, 52(99) (2016) 14266-14269.
  • [12] McKone J.R., Pieterick A.P., Gray H.B., Lewis N.S., Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes, Journal of the American Chemical Society, 135(1) (2013) 223-231.
  • [13] Gao T., Zhang Q., Li L., Zhou X., Li L., Li H., Zhai T., 2D Ternary Chalcogenides, Advanced Optical Materials, 6(14) (2018) 1-16.
  • [14] Wu Q., Ma Y., Peng R., Huang B., Dai Y., Single-Layer Cu2WS4 with Promising Electrocatalytic Activity toward Hydrogen Evolution Reaction, ACS Applied Materials & Interfaces, 11(49) (2019) 45818-45824.
  • [15] Reymond F., Fermı́n D., Lee H.J., Girault H.H., Electrochemistry at liquid/liquid interfaces: methodology and potential applications, Electrochimica Acta, 45(15) (2000) 2647-2662.
  • [16] Girault H.H., Hard Science at Soft Interfaces, in Developments in Electrochemistry, John Wiley & Sons Ltd., 2014; 295-308.
  • [17] Koelle U., Infelta P.P., Graetzel M., Kinetics and mechanism of the reduction of protons to hydrogen by cobaltocene, Inorganic Chemistry, 27(5) (1988) 879-883.
  • [18] Ge P.Y., Todorova T.K., Patir I.H., Olaya A.J., Vrubel H., Mendez M., Hu X.L., Corminboeuf C., Girault H.H., Biphasic water splitting by osmocene, Proceedings of the National Academy of Sciences of the United States of America, 109(29) (2012) 11558-11563.
  • [19] Ge P.Y., Olaya A.J., Scanlon M.D., Patir I.H., Vrubel H., Girault H.H., Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene as a Light-Driven Electron Donor, Chemphyschem, 14(10) (2013) 2308-2316.
  • [20] Rivier L., Stockmann T.J., Méndez M.A., Scanlon M.D., Peljo P., Opallo M. , H.H. Girault, Decamethylruthenocene Hydride and Hydrogen Formation at Liquid|Liquid Interfaces, The Journal of Physical Chemistry C, 119(46) (2015) 25761-25769.
  • [21] Rivier L., Peljo P., Vannay L.A.C., Gschwend G.C., Méndez M.A., Corminboeuf C., Scanlon M.D., H.H. Girault, Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling, Angewandte Chemie International Edition, 56(9) (2017) 2324-2327.
  • [22] Hatay I., Su B., Li F., Partovi-Nia R., Vrubel H., Hu X., Ersoz M., H.H. Girault, Hydrogen evolution at liquid-liquid interfaces, Angewandte Chemie International Edition, 48(28) (2009) 5139-5142.
  • [23] Nieminen J.J., Hatay I., Ge P., Mendez M.A., Murtomaki L., Girault H.H., Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface, Chem Commun, 47(19) (2011) 5548-5550.
  • [24] Aslan E., Patir I.H., Ersoz M., Cu nanoparticles electrodeposited at liquid-liquid interfaces: a highly efficient catalyst for the hydrogen evolution reaction, Chemistry - A European Journal, 21(12) (2015) 4585-4589.
  • [25] Yanalak G., Aljabour A., Aslan E., Ozel F., Patir I.H., Kus M., Ersoz M., NiO and Co3O4 nanofiber catalysts for the hydrogen evolution reaction at liquid/liquid interfaces, Electrochimica Acta, 291 (2018) 311-318.
  • [26] Scanlon M.D., Bian X., Vrubel H., Amstutz V., Schenk K., Hu X., Liu B., Girault H.H., Low-cost industrially available molybdenum boride and carbide as ""platinum-like"" catalysts for the hydrogen evolution reaction in biphasic liquid systems, Phys. Chem. Chem. Phys., 15(8) (2013) 2847-2857.
  • [27] Hatay I., Ge P.Y., Vrubel H., Hu X., Girault H.H., Hydrogen evolution at polarised liquid/liquid interfaces catalyzed by molybdenum disulfide, Energy & Environmental Science, 4(10) (2011) 4246-4251.
  • [28] Aslan E., Hatay Patir I., Ersoz M., Catalytic Hydrogen Evolution by Tungsten Disulfide at Liquid-Liquid Interfaces, Chem.Cat.Chem., 6(10) (2014) 2832-2835.
  • [29] Hirunpinyopas W., Rodgers A.N.J., Worrall S.D., Bissett M.A., Dryfe R.A.W., Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials, Chem. Nano Mat., 3(6) (2017) 428-435.
  • [30] Ozel F., Aslan E., Sarilmaz A.,and Hatay Patir I., Hydrogen Evolution Catalyzed by Cu2WS4 at Liquid-Liquid Interfaces, ACS Applied Materials & Interfaces, 8(39) (2016) 25881-25887.
  • [31] Aslan E., Sarilmaz A., Ozel F., Hatay Patir I., Girault H.H., Catalytic Hydrogen Evolution by Molybdenum-based Ternary Metal Sulfide Nanoparticles, ACS Applied Nano Materials, 2(11) (2019) 7204-7213.
  • [32] Aslan E., Sarilmaz A., Ozel F., Hatay Patir I., Girault H.H., 1D Amorphous Tungsten-Based Ternary Refractory Metal Sulfides for Catalytic Hydrogen Evolution at Soft Interfaces, Chem. Nano Mat., 5(12) (2019) 1461-1466.
  • [33] Aslan E., Sarilmaz A., Yanalak G., Ozel S.S., Ozel F., Hatay Patir I., Transition metal–incorporated tungsten-based ternary refractory metal selenides (MWSex; M = Fe, Co, Ni and Mn) as hydrogen evolution catalysts at soft interfaces, Materials Today Energy, 18 (2020) 1-8.
  • [34] Ozel F., Yar A., Aslan E., Arkan E., Aljabour A., Can M., Hatay Patir I., Kus M., Ersoz M., Earth-Abundant Cu2CoSnS4 Nanofibers for Highly Efficient H2 Evolution at Soft Interfaces, Chem. Nano Mat., 1(7) (2015) 477-481.
  • [35] Ge P., Scanlon M.D., Peljo P., Bian X., Vubrel H., O'Neill A., Coleman J.N., Cantoni M., Hu X., Kontturi K., Liu B., Girault H.H., Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems, Chemical Communications, 48(52) (2012) 6484-6486.
  • [36] Bian X., Scanlon M.D., Wang S., Liao L., Tang Y., Liu B., Girault H.H., Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution, Chemical Science, 4(9) (2013) 3432-3441.
  • [37] Aslan E., Akin I., Hatay Patir I., Highly Active Cobalt Sulfide/Carbon Nanotube Catalyst for Hydrogen Evolution at Soft Interfaces, Chemistry - A European Journal, 22(15) (2016) 5342-5349.
  • [38] Aslan E., Akin I., Hatay Patir I., Enhanced Hydrogen Evolution Catalysis Based on Cu Nanoparticles Deposited on Carbon Nanotubes at the Liquid/Liquid Interface, Chem. Cat. Chem., 8(4) (2016) 719-723.
  • [39] Akin I., Aslan E., Hatay Patir I., Enhanced Hydrogen Evolution Catalysis at the Liquid/Liquid Interface by NixSy and NixSy/Carbon Nanotube Catalysts, European Journal of Inorganic Chemistry, 2017(33) (2017) 3961-3966.
  • [40] Sarilmaz A., Can M., Ozel F., Ternary copper tungsten selenide nanosheets synthesized by a facile hot-injection method, Journal of Alloys and Compounds, 699 (2017) 479-483.
  • [41] Genc E., Coskun H., Yanalak G., Aslan E., Ozel F., Hatay Patir I., Dye-sensitized photocatalytic hydrogen evolution by using copper-based ternary refractory metal chalcogenides, International Journal of Hydrogen Energy, 45(32) (2020) 15915-15923.
  • [42] Su B., Hatay I., Trojánek A., Samec Z., Khoury T., Gros C.P., Barbe J.M., Daina A., Carrupt P.A., Girault H.H., Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces, Journal of the American Chemical Society, 132(8) (2010) 2655-2662.
  • [43] Yıldırım M., Sarılmaz A., Özel F., Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets, Journal of Materials Science: Materials in Electronics, 29(1) (2018) 762-770.
  • [44] Crossland C.J., Hickey P.J., Evans J.S.O., The synthesis and characterisation of Cu2MX4 (M = W or Mo; X = S, Se or S/Se) materials prepared by a solvothermal method, Journal of Materials Chemistry, 15(34) (2005) 3452-3458.
Year 2021, Volume: 42 Issue: 1, 13 - 21, 29.03.2021
https://doi.org/10.17776/csj.772412

Abstract

Project Number

19401163

References

  • [1] Chen X., Shen S., Guo L., Mao S.S., Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews, 110(11) (2010) 6503-6570.
  • [2] Jaramillo T.F., Jørgensen K.P., Bonde J., Nielsen J.H., Horch S., Chorkendorff I., Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts, Science, 317(5834) (2007) 100-102.
  • [3] Merki D., Hu X., Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts, Energy & Environmental Science, 4(10) (2011) 3878-3888.
  • [4] Morales-Guio C.G., Hu X., Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts, Accounts of Chemical Research, 47(8) (2014) 2671-2681.
  • [5] Voiry D., Yamaguchi H., Li J., Silva R., Alves D.C.B., Fujita T., Chen M., Asefa T., Shenoy V.B., Eda G., Chhowalla M., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, Nature Materials, 12 (2013) 850-855.
  • [6] Wang H., Kong D., Johanes P., Cha J.J., Zheng G., Yan H., Liu N., Cui Y., MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces, Nano Letters, 13(7) (2013) 3426-3433.
  • [7] Zou M., Zhang J., Zhu H., Du M., Wang Q., M. Zhang M., Zhang X., A 3D dendritic WSe2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution, Journal of Materials Chemistry A, 3(23) (2015) 12149-12153.
  • [8] Liu Z., Zhao H., Li N., Zhang Y., Zhang X., Du Y., Assembled 3D electrocatalysts for efficient hydrogen evolution: WSe2 layers anchored on graphene sheets, Inorganic Chemistry Frontiers, 3(2) (2016) 313-319.
  • [9] Wang X., Chen Y., Zheng B., Qi F., He J., Li Q., Li P., Zhang W., Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution, Journal of Alloys and Compounds, 691 (2017) 698-704.
  • [10] Velazquez J.M., Saadi F.H., Pieterick A.P., Spurgeon J.M., Soriaga M.P., Brunschwig B.S. , Lewis N.S., Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils, Journal of Electroanalytical Chemistry, 716 (2014) 45-48.
  • [11] Sun Y., Zhang X., Mao B., Cao M., Controllable selenium vacancy engineering in basal planes of mechanically exfoliated WSe2 monolayer nanosheets for efficient electrocatalytic hydrogen evolution, Chemical Communications, 52(99) (2016) 14266-14269.
  • [12] McKone J.R., Pieterick A.P., Gray H.B., Lewis N.S., Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes, Journal of the American Chemical Society, 135(1) (2013) 223-231.
  • [13] Gao T., Zhang Q., Li L., Zhou X., Li L., Li H., Zhai T., 2D Ternary Chalcogenides, Advanced Optical Materials, 6(14) (2018) 1-16.
  • [14] Wu Q., Ma Y., Peng R., Huang B., Dai Y., Single-Layer Cu2WS4 with Promising Electrocatalytic Activity toward Hydrogen Evolution Reaction, ACS Applied Materials & Interfaces, 11(49) (2019) 45818-45824.
  • [15] Reymond F., Fermı́n D., Lee H.J., Girault H.H., Electrochemistry at liquid/liquid interfaces: methodology and potential applications, Electrochimica Acta, 45(15) (2000) 2647-2662.
  • [16] Girault H.H., Hard Science at Soft Interfaces, in Developments in Electrochemistry, John Wiley & Sons Ltd., 2014; 295-308.
  • [17] Koelle U., Infelta P.P., Graetzel M., Kinetics and mechanism of the reduction of protons to hydrogen by cobaltocene, Inorganic Chemistry, 27(5) (1988) 879-883.
  • [18] Ge P.Y., Todorova T.K., Patir I.H., Olaya A.J., Vrubel H., Mendez M., Hu X.L., Corminboeuf C., Girault H.H., Biphasic water splitting by osmocene, Proceedings of the National Academy of Sciences of the United States of America, 109(29) (2012) 11558-11563.
  • [19] Ge P.Y., Olaya A.J., Scanlon M.D., Patir I.H., Vrubel H., Girault H.H., Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene as a Light-Driven Electron Donor, Chemphyschem, 14(10) (2013) 2308-2316.
  • [20] Rivier L., Stockmann T.J., Méndez M.A., Scanlon M.D., Peljo P., Opallo M. , H.H. Girault, Decamethylruthenocene Hydride and Hydrogen Formation at Liquid|Liquid Interfaces, The Journal of Physical Chemistry C, 119(46) (2015) 25761-25769.
  • [21] Rivier L., Peljo P., Vannay L.A.C., Gschwend G.C., Méndez M.A., Corminboeuf C., Scanlon M.D., H.H. Girault, Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling, Angewandte Chemie International Edition, 56(9) (2017) 2324-2327.
  • [22] Hatay I., Su B., Li F., Partovi-Nia R., Vrubel H., Hu X., Ersoz M., H.H. Girault, Hydrogen evolution at liquid-liquid interfaces, Angewandte Chemie International Edition, 48(28) (2009) 5139-5142.
  • [23] Nieminen J.J., Hatay I., Ge P., Mendez M.A., Murtomaki L., Girault H.H., Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface, Chem Commun, 47(19) (2011) 5548-5550.
  • [24] Aslan E., Patir I.H., Ersoz M., Cu nanoparticles electrodeposited at liquid-liquid interfaces: a highly efficient catalyst for the hydrogen evolution reaction, Chemistry - A European Journal, 21(12) (2015) 4585-4589.
  • [25] Yanalak G., Aljabour A., Aslan E., Ozel F., Patir I.H., Kus M., Ersoz M., NiO and Co3O4 nanofiber catalysts for the hydrogen evolution reaction at liquid/liquid interfaces, Electrochimica Acta, 291 (2018) 311-318.
  • [26] Scanlon M.D., Bian X., Vrubel H., Amstutz V., Schenk K., Hu X., Liu B., Girault H.H., Low-cost industrially available molybdenum boride and carbide as ""platinum-like"" catalysts for the hydrogen evolution reaction in biphasic liquid systems, Phys. Chem. Chem. Phys., 15(8) (2013) 2847-2857.
  • [27] Hatay I., Ge P.Y., Vrubel H., Hu X., Girault H.H., Hydrogen evolution at polarised liquid/liquid interfaces catalyzed by molybdenum disulfide, Energy & Environmental Science, 4(10) (2011) 4246-4251.
  • [28] Aslan E., Hatay Patir I., Ersoz M., Catalytic Hydrogen Evolution by Tungsten Disulfide at Liquid-Liquid Interfaces, Chem.Cat.Chem., 6(10) (2014) 2832-2835.
  • [29] Hirunpinyopas W., Rodgers A.N.J., Worrall S.D., Bissett M.A., Dryfe R.A.W., Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials, Chem. Nano Mat., 3(6) (2017) 428-435.
  • [30] Ozel F., Aslan E., Sarilmaz A.,and Hatay Patir I., Hydrogen Evolution Catalyzed by Cu2WS4 at Liquid-Liquid Interfaces, ACS Applied Materials & Interfaces, 8(39) (2016) 25881-25887.
  • [31] Aslan E., Sarilmaz A., Ozel F., Hatay Patir I., Girault H.H., Catalytic Hydrogen Evolution by Molybdenum-based Ternary Metal Sulfide Nanoparticles, ACS Applied Nano Materials, 2(11) (2019) 7204-7213.
  • [32] Aslan E., Sarilmaz A., Ozel F., Hatay Patir I., Girault H.H., 1D Amorphous Tungsten-Based Ternary Refractory Metal Sulfides for Catalytic Hydrogen Evolution at Soft Interfaces, Chem. Nano Mat., 5(12) (2019) 1461-1466.
  • [33] Aslan E., Sarilmaz A., Yanalak G., Ozel S.S., Ozel F., Hatay Patir I., Transition metal–incorporated tungsten-based ternary refractory metal selenides (MWSex; M = Fe, Co, Ni and Mn) as hydrogen evolution catalysts at soft interfaces, Materials Today Energy, 18 (2020) 1-8.
  • [34] Ozel F., Yar A., Aslan E., Arkan E., Aljabour A., Can M., Hatay Patir I., Kus M., Ersoz M., Earth-Abundant Cu2CoSnS4 Nanofibers for Highly Efficient H2 Evolution at Soft Interfaces, Chem. Nano Mat., 1(7) (2015) 477-481.
  • [35] Ge P., Scanlon M.D., Peljo P., Bian X., Vubrel H., O'Neill A., Coleman J.N., Cantoni M., Hu X., Kontturi K., Liu B., Girault H.H., Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems, Chemical Communications, 48(52) (2012) 6484-6486.
  • [36] Bian X., Scanlon M.D., Wang S., Liao L., Tang Y., Liu B., Girault H.H., Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution, Chemical Science, 4(9) (2013) 3432-3441.
  • [37] Aslan E., Akin I., Hatay Patir I., Highly Active Cobalt Sulfide/Carbon Nanotube Catalyst for Hydrogen Evolution at Soft Interfaces, Chemistry - A European Journal, 22(15) (2016) 5342-5349.
  • [38] Aslan E., Akin I., Hatay Patir I., Enhanced Hydrogen Evolution Catalysis Based on Cu Nanoparticles Deposited on Carbon Nanotubes at the Liquid/Liquid Interface, Chem. Cat. Chem., 8(4) (2016) 719-723.
  • [39] Akin I., Aslan E., Hatay Patir I., Enhanced Hydrogen Evolution Catalysis at the Liquid/Liquid Interface by NixSy and NixSy/Carbon Nanotube Catalysts, European Journal of Inorganic Chemistry, 2017(33) (2017) 3961-3966.
  • [40] Sarilmaz A., Can M., Ozel F., Ternary copper tungsten selenide nanosheets synthesized by a facile hot-injection method, Journal of Alloys and Compounds, 699 (2017) 479-483.
  • [41] Genc E., Coskun H., Yanalak G., Aslan E., Ozel F., Hatay Patir I., Dye-sensitized photocatalytic hydrogen evolution by using copper-based ternary refractory metal chalcogenides, International Journal of Hydrogen Energy, 45(32) (2020) 15915-15923.
  • [42] Su B., Hatay I., Trojánek A., Samec Z., Khoury T., Gros C.P., Barbe J.M., Daina A., Carrupt P.A., Girault H.H., Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces, Journal of the American Chemical Society, 132(8) (2010) 2655-2662.
  • [43] Yıldırım M., Sarılmaz A., Özel F., Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets, Journal of Materials Science: Materials in Electronics, 29(1) (2018) 762-770.
  • [44] Crossland C.J., Hickey P.J., Evans J.S.O., The synthesis and characterisation of Cu2MX4 (M = W or Mo; X = S, Se or S/Se) materials prepared by a solvothermal method, Journal of Materials Chemistry, 15(34) (2005) 3452-3458.
There are 44 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Emre Aslan 0000-0002-7672-2873

Project Number 19401163
Publication Date March 29, 2021
Submission Date July 21, 2020
Acceptance Date January 16, 2021
Published in Issue Year 2021Volume: 42 Issue: 1

Cite

APA Aslan, E. (2021). Hydrogen evolution by ternary metal selenide at biomembrane-like soft interfaces. Cumhuriyet Science Journal, 42(1), 13-21. https://doi.org/10.17776/csj.772412