Research Article
BibTex RIS Cite
Year 2020, Volume: 41 Issue: 4, 908 - 915, 29.12.2020
https://doi.org/10.17776/csj.745443

Abstract

References

  • [1] Lucchetta M.C. Saporiti F. Audebert F., Improvement of surface properties of an Al-Sn-Cu plain bearing alloy produced by rapid solidification. Journal of Alloys and Compounds, 805 (2019) 709-717.
  • [2] Prucka M., Development of an Engine Stop/Start at Idle System. SAE
  • [3] Technical Paper, 2005-01-0069.Tie D. Guan R. Guo N. Zhao Z. Su N. Li J. and Zhang Y., Effects of Different Heat Treatment on Microstructure, Mechanical and Conductive Properties of Continuous Rheo-Extruded Al-0.9Si-0.6Mg (wt%) Alloy, Metals, 5 (2015) 648-655.
  • [4] Tie D. Wang Y. Wang X. Guan R. Yan L. Zhang J. Cai Z. Zhao Y. Gao F and Liu H., Microstructure Evolution and Properties Tailoring of Rheo-Extruded Al-Sc-Zr-Fe Conductor via Thermo-Mechanical Treatment, Metals, 13 (2020) 845-10.
  • [5] Salinas D.R. Bessone J.B., Electrochemical Behavior of Al-5%Zn-0.1%Sn Sacrificial Anode in Aggressive Media: Influence of Its Alloying Elements and the Solidification Structure, Corrosion, 47 (1991) 665-673.
  • [6] Kliskic M. Radosevic J. Aljinovic L.J., Behaviour of Al-Sn alloy on the negative side of the open-circuit potential, J. Appl. Electrochem., 24 (1994) 814-818.
  • [7] Gudic S. Radosevic J. Kliskic M., Impedance and transient study of aluminium barrier-type oxide films, J. Appl. Electrochem, 26 (1996) 1027-1035.
  • [8] Gudic S. Radosevic J. Kliskic M., Impedence transient study of barrier ®lms on aluminium and Al-Sn alloys. Proceedings of the Symposium on Passivity and its Breakdown. Electrochemical Society, INC, New Jersey, 1997, p. 689.
  • [9] Bessone J.B. Flamini D.O. Saidman S.B., Comprehensive model for the activation mechanism of Al-Zn Alloys produced by Indium, Corros Sci., 47 (2005) 95-105.
  • [10] Reboul M.C. Gimenez P.H. Rameau J.J., A Proposed Activation Mechanism for Al Anodes, Corrosion, 40 (1984) 366-371. [11] Tamada A. Tamura Y., The electrochemical characteristics of aluminum galvanic anodes in an arctic seawater, Corros. Sci., 34 (1993) 261-277.
  • [12] Khireche S. Boughrara D. Kadri A. Hamadou L. Benbrahim N., Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.%NaCl solution, Corrosion Science, 87 (2014) 504-516.
  • [13] El Shayeb H.A. Abd El Wahab F.M. Zein El Abedin S., Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions, Corrosion Science, 43 (2001) 655-669.
  • [14] Ari M. Saatçi B. Gündüz M. Meydaneri F. Bozoklu M., Microstructure and thermo-electrical transport properties of Cd–Sn alloys, M. Mater. Charact., 59 (2008) 624-630.
  • [15] Ari M. Saatçi B. Gündüz M. Payveren M. Durmus S., Thermo-electrical characterization of Sn–Zn alloys, Mater. Charact,. 59 (2008) 757-763.
  • [16] Saatci B. Ari M. Gündüz M. Meydaneri F. Bozoklu M. Durmus S., Thermal and Electrical Conductivities Of Cd-Zn Alloys, J. Phys. Condens. Matter, 18 (2006) 10643-10653.
  • [17] Jǔskenas R. Mockus Z. Kanapeckaite S. Stalnionis G. Survila A., XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys, Electrochimica Acta, 52 (2006) 928-935.
  • [18] Ortiz A.L. Shaw L., X-ray diffraction analysis of a severely plastically deformed aluminum alloy, Acta Mater., 52 (2004) 2185-2197.
  • [19] Pinasco M.R. Cordano E. Giovannini M., X-ray diffraction and microstructural study of PFM precious metal dental alloys under different metallurgical conditions, J.Alloys Compd., 289 (1999) 289-298.
  • [20] Kasai M. Matsubara E. Saida J. Nakayama M. Uematsu K. Zhang T. Inoue A., Crystallisation behaviour of Cu60Zr30Ti10 bulk glassy alloy, Mater. Sci. Eng. A, 375 (2004) 744-748.
  • [21] Cullity B.D., Elements of X-Ray Diffraction, third ed., United States of America: Addison-Wesley Publishing Company, Inc, 1967.
  • [22] Callister W.D., Materials Science and Engineering-an Introduction, New York: John Wileyand Sons, 1997.
  • [23] Zhou D.J., Study on Al-Sn-Si-Cu Bearing Alloy, J. Light Alloy Fabr. Technol., 28 (5) (2000) 44-46.
  • [24] G.C., Influence of Silicon Content on Friction and Wear Characteristics of New Al-Sn-Si Alloys, The Chin. J. Nonferrous Metals, 8 (9) (1998) 101-105.
  • [25] Şahin M. Çadırlı E. Bayram Ü. Ata Esener P., Investigation of the thermoelectrical properties of the Sn91.22x–Zn8.8–Agx, Journal of Thermal Analysis and Calorimetry, 132 (2018) 317–325.
  • [26] Kittel C. Introduction to solid state physics, . 6th ed., New York: Wiley, 1965.
  • [27] Li X. Yu J.J., Modeling the effects of Cu variations on the precipitated phases and properties of Al-Zn-Mg-Cu alloys, J. Mater. Eng. Perform., 22 (2013) 2970–2981.
  • [28] Hamilton C. Sommers A. Dymek S., A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions, Int. J. Mach. Tool. Manu., 49 (2009) 230–238.
  • [29] Murthy K.V.S. Girisha D.P. Keshavamurthy Varol R. T. Koppad P.G., Mechanical and thermal properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging, Prog. Nat. Sci.-Mater., 27 (2017) 474–481.
  • [30] Kumar G.S. Prasad G. Pohl R.O., Review experimental determinations of the Lorenz number, J Mater Sci., 28 (1993) 4261–4272.
  • [31] Smith C.S., Palmer E.W., Thermal and electric conductivies of copper alloys, Trans. AIME, 117 (1935) 225-243.
  • [32] Çadırlı E. Kaya H. Büyük U. Şahin M. Üstün E. Gündüz M., Investigation of the thermo-electrical properties of A707 alloys, Thermochimica Acta, 673 (2019) 177–184
  • [33] Y. Yao, J. Fry, M.E. Fine, L.M. Keer., The Wiedemann–Franz–Lorenz relation for lead-free solder and intermetallic materials, Acta Mater., 61 (2013) 1525–1536.

Determination of the electrical and thermal properties of Al-Sn-Zn alloys

Year 2020, Volume: 41 Issue: 4, 908 - 915, 29.12.2020
https://doi.org/10.17776/csj.745443

Abstract

In the present work, the electrical resistivity, thermal conductivity and microstructure of the 70 at. % Al-15 at. % Sn-15 at. % Zn alloy have been investigated. The electrical resistivity of the alloy was obtained by four-point probe (DC 4PPT) method. Electrical resistivity measurements are used in conjunction with Wiedeman-Franz (W-F) law and Smith-Palmer (S-P) equations to obtain the thermal conductivity of the alloy. The microstructure parameters of the Al-Sn-Zn ternary alloy were obtained by XRD. The surface and phases of alloy were showed by SEM, MAPPING and the composition of each phase was determined by EDX.

References

  • [1] Lucchetta M.C. Saporiti F. Audebert F., Improvement of surface properties of an Al-Sn-Cu plain bearing alloy produced by rapid solidification. Journal of Alloys and Compounds, 805 (2019) 709-717.
  • [2] Prucka M., Development of an Engine Stop/Start at Idle System. SAE
  • [3] Technical Paper, 2005-01-0069.Tie D. Guan R. Guo N. Zhao Z. Su N. Li J. and Zhang Y., Effects of Different Heat Treatment on Microstructure, Mechanical and Conductive Properties of Continuous Rheo-Extruded Al-0.9Si-0.6Mg (wt%) Alloy, Metals, 5 (2015) 648-655.
  • [4] Tie D. Wang Y. Wang X. Guan R. Yan L. Zhang J. Cai Z. Zhao Y. Gao F and Liu H., Microstructure Evolution and Properties Tailoring of Rheo-Extruded Al-Sc-Zr-Fe Conductor via Thermo-Mechanical Treatment, Metals, 13 (2020) 845-10.
  • [5] Salinas D.R. Bessone J.B., Electrochemical Behavior of Al-5%Zn-0.1%Sn Sacrificial Anode in Aggressive Media: Influence of Its Alloying Elements and the Solidification Structure, Corrosion, 47 (1991) 665-673.
  • [6] Kliskic M. Radosevic J. Aljinovic L.J., Behaviour of Al-Sn alloy on the negative side of the open-circuit potential, J. Appl. Electrochem., 24 (1994) 814-818.
  • [7] Gudic S. Radosevic J. Kliskic M., Impedance and transient study of aluminium barrier-type oxide films, J. Appl. Electrochem, 26 (1996) 1027-1035.
  • [8] Gudic S. Radosevic J. Kliskic M., Impedence transient study of barrier ®lms on aluminium and Al-Sn alloys. Proceedings of the Symposium on Passivity and its Breakdown. Electrochemical Society, INC, New Jersey, 1997, p. 689.
  • [9] Bessone J.B. Flamini D.O. Saidman S.B., Comprehensive model for the activation mechanism of Al-Zn Alloys produced by Indium, Corros Sci., 47 (2005) 95-105.
  • [10] Reboul M.C. Gimenez P.H. Rameau J.J., A Proposed Activation Mechanism for Al Anodes, Corrosion, 40 (1984) 366-371. [11] Tamada A. Tamura Y., The electrochemical characteristics of aluminum galvanic anodes in an arctic seawater, Corros. Sci., 34 (1993) 261-277.
  • [12] Khireche S. Boughrara D. Kadri A. Hamadou L. Benbrahim N., Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.%NaCl solution, Corrosion Science, 87 (2014) 504-516.
  • [13] El Shayeb H.A. Abd El Wahab F.M. Zein El Abedin S., Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions, Corrosion Science, 43 (2001) 655-669.
  • [14] Ari M. Saatçi B. Gündüz M. Meydaneri F. Bozoklu M., Microstructure and thermo-electrical transport properties of Cd–Sn alloys, M. Mater. Charact., 59 (2008) 624-630.
  • [15] Ari M. Saatçi B. Gündüz M. Payveren M. Durmus S., Thermo-electrical characterization of Sn–Zn alloys, Mater. Charact,. 59 (2008) 757-763.
  • [16] Saatci B. Ari M. Gündüz M. Meydaneri F. Bozoklu M. Durmus S., Thermal and Electrical Conductivities Of Cd-Zn Alloys, J. Phys. Condens. Matter, 18 (2006) 10643-10653.
  • [17] Jǔskenas R. Mockus Z. Kanapeckaite S. Stalnionis G. Survila A., XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys, Electrochimica Acta, 52 (2006) 928-935.
  • [18] Ortiz A.L. Shaw L., X-ray diffraction analysis of a severely plastically deformed aluminum alloy, Acta Mater., 52 (2004) 2185-2197.
  • [19] Pinasco M.R. Cordano E. Giovannini M., X-ray diffraction and microstructural study of PFM precious metal dental alloys under different metallurgical conditions, J.Alloys Compd., 289 (1999) 289-298.
  • [20] Kasai M. Matsubara E. Saida J. Nakayama M. Uematsu K. Zhang T. Inoue A., Crystallisation behaviour of Cu60Zr30Ti10 bulk glassy alloy, Mater. Sci. Eng. A, 375 (2004) 744-748.
  • [21] Cullity B.D., Elements of X-Ray Diffraction, third ed., United States of America: Addison-Wesley Publishing Company, Inc, 1967.
  • [22] Callister W.D., Materials Science and Engineering-an Introduction, New York: John Wileyand Sons, 1997.
  • [23] Zhou D.J., Study on Al-Sn-Si-Cu Bearing Alloy, J. Light Alloy Fabr. Technol., 28 (5) (2000) 44-46.
  • [24] G.C., Influence of Silicon Content on Friction and Wear Characteristics of New Al-Sn-Si Alloys, The Chin. J. Nonferrous Metals, 8 (9) (1998) 101-105.
  • [25] Şahin M. Çadırlı E. Bayram Ü. Ata Esener P., Investigation of the thermoelectrical properties of the Sn91.22x–Zn8.8–Agx, Journal of Thermal Analysis and Calorimetry, 132 (2018) 317–325.
  • [26] Kittel C. Introduction to solid state physics, . 6th ed., New York: Wiley, 1965.
  • [27] Li X. Yu J.J., Modeling the effects of Cu variations on the precipitated phases and properties of Al-Zn-Mg-Cu alloys, J. Mater. Eng. Perform., 22 (2013) 2970–2981.
  • [28] Hamilton C. Sommers A. Dymek S., A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions, Int. J. Mach. Tool. Manu., 49 (2009) 230–238.
  • [29] Murthy K.V.S. Girisha D.P. Keshavamurthy Varol R. T. Koppad P.G., Mechanical and thermal properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging, Prog. Nat. Sci.-Mater., 27 (2017) 474–481.
  • [30] Kumar G.S. Prasad G. Pohl R.O., Review experimental determinations of the Lorenz number, J Mater Sci., 28 (1993) 4261–4272.
  • [31] Smith C.S., Palmer E.W., Thermal and electric conductivies of copper alloys, Trans. AIME, 117 (1935) 225-243.
  • [32] Çadırlı E. Kaya H. Büyük U. Şahin M. Üstün E. Gündüz M., Investigation of the thermo-electrical properties of A707 alloys, Thermochimica Acta, 673 (2019) 177–184
  • [33] Y. Yao, J. Fry, M.E. Fine, L.M. Keer., The Wiedemann–Franz–Lorenz relation for lead-free solder and intermetallic materials, Acta Mater., 61 (2013) 1525–1536.
There are 32 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Canan Alper Billur 0000-0002-6888-8013

Buket Saatçi 0000-0002-1351-5279

Publication Date December 29, 2020
Submission Date May 30, 2020
Acceptance Date August 20, 2020
Published in Issue Year 2020Volume: 41 Issue: 4

Cite

APA Alper Billur, C., & Saatçi, B. (2020). Determination of the electrical and thermal properties of Al-Sn-Zn alloys. Cumhuriyet Science Journal, 41(4), 908-915. https://doi.org/10.17776/csj.745443