Research Article
BibTex RIS Cite

An adsorptive stripping voltammetric study based on disposable pencil graphite sensor for the determination of caffeine in local brand ice tea

Year 2020, Volume: 41 Issue: 3, 680 - 689, 30.09.2020
https://doi.org/10.17776/csj.740556

Abstract

In this study, voltammetric methods were developed for the quantification of caffeine (CAF) analysis based on a practical, economical, sensitive, and eco-friendly pencil graphite electrode (PGE). Initially, the electrochemical behavior of CAF was investigated by cyclic voltammetry (CV), and the results reveal that CAF has an irreversible oxidation signal. The optimum analytical parameters such as, supporting electrolyte, pH, accumulation potential, and accumulation time for the determination of CAF analysis were investigated to develop differential pulse (AdsDPV) and square wave adsorptive stripping voltammetric (AdsSWV) methods. In order to examine the nature of the buffer, Britton Robinson (BR), phosphate buffer (PBS), and 0.1 M H2SO4 solutions were tested in the appropriate pH ranges. The best electrolyte and pH were determined as PBS buffer and pH 1.5. The optimum values for accumulation potentials and times were optimized, and under optimized conditions, the oxidation peak current of CAF was proportional to its concentration. The PGE used exhibited wide linear working range for AdsDPV (2.36-1000 µM) and AdsSWV (3.69-1600 µM) methods with the detection limits of 0.71 µM for AdsDPV and 1.107 µM for AdsSWV. The developed methods were applied to the analysis of CAF in an ice tea beverage sample with acceptable recoveries.

Supporting Institution

ANKARA UNIVERSİTESİ

Project Number

20L0430001, 17H0430009, 13L4240009

Thanks

Authors highly thankful to the Presidency of Scientific Research Projects of Ankara University for financial supports with the project numbers 20L0430001, 17H0430009 and 13L4240009.

References

  • de Paula Lima J. and Farah A. Caffeine and minor methylxanthines in coffee, in Coffee. 1st ed. RSC Publishing, 2019; pp. 543-564.
  • Schuster J. and Mitchell E.S., More than just caffeine: Psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. Prog Neuro-Psychoph. 89 (2019) 263-274.
  • Okuroglu E.,Tekin T., Kuloglu M., Mercan S., Bavunoglu I., Acikkol M. and Turkmen Z., Investigation of caffeine concentrations in sport supplements and inconsistencies in product labelling. J. Chem. Metrol. 13(1) (2019).
  • Farag A.S., Pravcová K., Česlová L.,Vytřas K. and Sýs M. Simultaneous determination of caffeine and pyridoxine in energy drinks using differential pulse voltammetry at glassy carbon electrode modified with nafion®. Electroanalysis. 31(8) (2019) 1494-1499.
  • Darakjian L.I. and Kaddoumi A., Physiologically based pharmacokinetic/pharmacodynamic model for caffeine disposition in pregnancy. Mol. Pharm. 16(3) (2019) 1340-1349.
  • Mourya S.,Bodla R.,Taurean R., and Sharma A., Simultaneous estimation of xanthine alkaloids (theophylline, theobromine and caffeine) by high-performance liquid chromatography. Int. J. Drug Regul. Aff. (IJDRA). 7(2) (2019) 35-41.
  • Lader M.H., Caffeine withdrawal. Caffeine and Behavior: Current Views & Research Trends: Current Views and Research Trends. CRS press: London, 1999; pp. 151.
  • Dash S.S. and Gummadi S.N., Catabolic pathways and biotechnological applications of microbial caffeine degradation. Biotechnol. Lett. 28(24) (2006) 1993-2002.
  • Diener H., Pfaffenrath V., Pageler L., Peil H. and Aicher B. The fixed combination of acetylsalicylic acid, paracetamol and caffeine is more effective than single substances and dual combination for the treatment of headache: A multicentre, randomized, double-blind, single-dose, placebo-controlled parallel group study. Cephalalgia. 25(10) (2005) 776-787.
  • Tokola R.A., Kangasniemi P., Neuvonen P.J. and Tokola O. Tolfenamic acid, metoclopramide, caffeine and their combinations in the treatment of migraine attacks. Cephalalgia. 4(4) (1984) 253-263.
  • Sereshti H. and Samadi S. A rapid and simple determination of caffeine in teas, coffees and eight beverages. Food Chem. 158 (2014) 8-13.
  • Greenberg J.A., Dunbar C.C., Schnoll R., Kokolis R., Kokolis S. and Kassotis J. Caffeinated beverage intake and the risk of heart disease mortality in the elderly: A prospective analysis. Am J Clin Nutr. 85(2) (2007) 392-398.
  • Lucas M., Mirzaei F., Pan A., Okereke O.I.,Willett W.C., O’Reilly É.J., Koenen K. and Ascherio A. Coffee, caffeine, and risk of depression among women. Arch. Intern. Med. 171(17) (2011) 1571-1578.
  • Švorc L.u. Determination of caffeine: A comprehensive review on electrochemical methods. Int. J. Electrochem. Sci. 8 (2013) 5755-5773.
  • Tajeu K.Y., Dongmo L.M. and Tonle I.K. Fullerene/MWCNT/nafion modified glassy carbon electrode for the electrochemical determination of caffeine. Am. J. Anal. Chem. 11(2) (2020) 114-127.
  • Kalvoda R. Adsorptive stripping voltammetry in trace analysis, in Contemporary electroanalytical chemistry. Berlin: Springer. 1990; pp. 403-405.
  • Kalvoda R. Review of adsorptive stripping voltammetry—assessment and prospects. Fresenius J. Anal. Chem. 349(8-9) (1994) 565-570.
  • Fanjul-Bolado P., Hernández-Santos D., Lamas-Ardisana P.J., Martín-Pernía A. and Costa-García A. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim. Acta. 53(10) (2008) 3635-3642.
  • Wring S.A. and Hart J.P. Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review. Analyst. 117(8) (1992) 1215-1229.
  • Bayraktepe D.E., Yazan Z. and Önal M. Sensitive and cost effective disposable composite electrode based on graphite, nano-smectite and multiwall carbon nanotubes for the simultaneous trace level detection of ascorbic acid and acetylsalicylic acid in pharmaceuticals. Talanta. 203 (2019) 131-139.
  • David I.G., Iordache L., Popa D.E., Buleandra M., David V. and Iorgulescu E.-E. Novel voltammetric investigation of dipyridamole at a disposable pencil graphite electrode. Turk J Chem. 43(4) (2019) 1109-1122.
  • Ly S.Y., Jung Y.S., Kim M.H., kwon Han I., Jung W.W. and Kim H.S. Determination of caffeine using a simple graphite pencil electrode with square-wave anodic stripping voltammetry. Microchim. Acta. 146(3-4) (2004) 207-213.
  • Özcan A., Gürbüz M., and Özcan A.A. Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly (thiophene) modified pencil graphite electrode. Talanta. 187 (2018) 125-132.
  • Dagar K. and Pundir C. An improved amperometric l-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode. Enzyme Microb. Technol. 96 (2017) 177-186.
  • Dede E., Sağlam Ö. and Dilgin Y. Sensitive voltammetric determination of niclosamide at a disposable pencil graphite electrode. Electrochim. Acta. 127 (2014) 20-26.
  • Dilgin D.G. and Karakaya S. Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater. Sci. Eng. C. 63 (2016) 570-576.
  • Kariuki J.K. An electrochemical and spectroscopic characterization of pencil graphite electrodes. . Electrochem. Soc. 159(9) (2012) 747-751.
  • Eskiköy Bayraktepe D. and Yazan Z. Application of single‐use electrode based on nano‐clay and MWCNT for simultaneous determination of acetaminophen, ascorbic acid and acetylsalicylic acid in pharmaceutical dosage. Electroanalysis. doi: 10.1002/elan.201900601.
  • Wang J., Analytical electrochemistry 3rd ed. wiley-vch hoboken. NJ. 2006
  • Chitravathi S. and Munichandraiah N. Voltammetric determination of paracetamol, tramadol and caffeine using poly (nile blue) modified glassy carbon electrode. J. Electroanal. Chem. 764(2016) 93-103.
  • Erden S., Bayraktepe D.E., Yazan Z. and Dinç E. TiO2 modified carbon paste sensor for voltammetric analysis and chemometric optimization approach of amlodipine in commercial formulation. Ionics. 22(7) (2016) 1231-1240.
  • Radi A., El-Ghany N.A. and Wahdan T. Voltammetric behaviour of rabeprazole at a glassy carbon electrode and its determination in tablet dosage form. Il Farmaco. 59(7) (2004) 515-518.
  • Ali, H. S., Abdullah, A. A., Pınar, P. T., Yardım, Y. and Şentürk, Z. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: its comparison with HPLC-DAD. Talanta. 170 (2017) 384-391.
  • Alizadeh T.,Ganjali M.R., Zare M. and Norouzi P. Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochim. Acta. 55(5) (2010) 1568-1574.
  • Yang S.,Yang R., Li G., Qu L., Li J. and Yu L. Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J. Electroanal. Chem. 639(1-2) (2010) 77-82.
  • Zhang J., Wang L., Guo W., Peng X., Li M. and Yuan Z. Sensitive differential pulse stripping voltammetry of caffeine in medicines and cola using a sensor based on multi-walled carbon nanotubes and nafion. Int. J. Electrochem. Sci. 6(4) (2011) 997-1006.
  • Sun J.-Y., Huang K.-J., Wei S.-Y., Wu Z.-W. and Ren F.-P. A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids Surf. B 84(2) (2011) 421-426.
  • Zhao F., Wang F., Zhao W., Zhou J., Liu Y., Zou L. and Ye B., Voltammetric sensor for caffeine based on a glassy carbon electrode modified with nafion and graphene oxide. Microchim. Acta. 174(3-4) (2011) 383-390.
  • Habibi B., Abazari M. and Pournaghi-Azar M.H. A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry. Chinese J. Catal. 33(11-12) (2012) 1783-1790.
  • Nunes R.S. and Cavalheiro É.T. Caffeine determination at a carbon fiber ultramicroelectrodes by fast-scan cyclic voltammetry. ‎J. Braz. Chem. Soc. 23(4) (2012) 670-677.
  • Švorc L.u., Tomčík P., Svítková J., Rievaj M. and Bustin D. Voltammetric determination of caffeine in beverage samples on bare boron-doped diamond electrode. Food chem. 135(3) (2012) 1198-1204.
  • Mersal G.A. Experimental and computational studies on the electrochemical oxidation of caffeine at pseudo carbon paste electrode and its voltammetric determination in different real samples. Food Anal. Methods. 5(3) (2012) 520-529.
  • Lezi N., Economopoulos S., Prodromidis M., Economou A. and Tagmatarchis N. Fabrication of a “green” and low-cost screen-printed graphene sensor and its application to the determination of caffeine by adsorptive stripping voltammetry. Int. J. Electrochem. Sci. 12(2017) 6054-6067.
  • Shehata M., Azab S. and Fekry A. May glutathione and graphene oxide enhance the electrochemical detection of caffeine on carbon paste sensor in aqueous and surfactant media for beverages analysis?. Synth. Met. 256 (2019) 116122.
  • Tyszczuk-Rotko K., Pietrzak K. and Sasal A. Adsorptive stripping voltammetric method for the determination of caffeine at integrated three-electrode screen-printed sensor with carbon/carbon nanofibers working electrode. Adsorption. 25(4) (2019) 913-921.
  • Fekry A., Shehata M., Azab S. and Walcarius A. Voltammetric detection of caffeine in pharmacological and beverages samples based on simple nano-co (ii, iii) oxide modified carbon paste electrode in aqueous and micellar media. Sens. Actuators B Chem. 302 (2020) 127172.
Year 2020, Volume: 41 Issue: 3, 680 - 689, 30.09.2020
https://doi.org/10.17776/csj.740556

Abstract

Project Number

20L0430001, 17H0430009, 13L4240009

References

  • de Paula Lima J. and Farah A. Caffeine and minor methylxanthines in coffee, in Coffee. 1st ed. RSC Publishing, 2019; pp. 543-564.
  • Schuster J. and Mitchell E.S., More than just caffeine: Psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. Prog Neuro-Psychoph. 89 (2019) 263-274.
  • Okuroglu E.,Tekin T., Kuloglu M., Mercan S., Bavunoglu I., Acikkol M. and Turkmen Z., Investigation of caffeine concentrations in sport supplements and inconsistencies in product labelling. J. Chem. Metrol. 13(1) (2019).
  • Farag A.S., Pravcová K., Česlová L.,Vytřas K. and Sýs M. Simultaneous determination of caffeine and pyridoxine in energy drinks using differential pulse voltammetry at glassy carbon electrode modified with nafion®. Electroanalysis. 31(8) (2019) 1494-1499.
  • Darakjian L.I. and Kaddoumi A., Physiologically based pharmacokinetic/pharmacodynamic model for caffeine disposition in pregnancy. Mol. Pharm. 16(3) (2019) 1340-1349.
  • Mourya S.,Bodla R.,Taurean R., and Sharma A., Simultaneous estimation of xanthine alkaloids (theophylline, theobromine and caffeine) by high-performance liquid chromatography. Int. J. Drug Regul. Aff. (IJDRA). 7(2) (2019) 35-41.
  • Lader M.H., Caffeine withdrawal. Caffeine and Behavior: Current Views & Research Trends: Current Views and Research Trends. CRS press: London, 1999; pp. 151.
  • Dash S.S. and Gummadi S.N., Catabolic pathways and biotechnological applications of microbial caffeine degradation. Biotechnol. Lett. 28(24) (2006) 1993-2002.
  • Diener H., Pfaffenrath V., Pageler L., Peil H. and Aicher B. The fixed combination of acetylsalicylic acid, paracetamol and caffeine is more effective than single substances and dual combination for the treatment of headache: A multicentre, randomized, double-blind, single-dose, placebo-controlled parallel group study. Cephalalgia. 25(10) (2005) 776-787.
  • Tokola R.A., Kangasniemi P., Neuvonen P.J. and Tokola O. Tolfenamic acid, metoclopramide, caffeine and their combinations in the treatment of migraine attacks. Cephalalgia. 4(4) (1984) 253-263.
  • Sereshti H. and Samadi S. A rapid and simple determination of caffeine in teas, coffees and eight beverages. Food Chem. 158 (2014) 8-13.
  • Greenberg J.A., Dunbar C.C., Schnoll R., Kokolis R., Kokolis S. and Kassotis J. Caffeinated beverage intake and the risk of heart disease mortality in the elderly: A prospective analysis. Am J Clin Nutr. 85(2) (2007) 392-398.
  • Lucas M., Mirzaei F., Pan A., Okereke O.I.,Willett W.C., O’Reilly É.J., Koenen K. and Ascherio A. Coffee, caffeine, and risk of depression among women. Arch. Intern. Med. 171(17) (2011) 1571-1578.
  • Švorc L.u. Determination of caffeine: A comprehensive review on electrochemical methods. Int. J. Electrochem. Sci. 8 (2013) 5755-5773.
  • Tajeu K.Y., Dongmo L.M. and Tonle I.K. Fullerene/MWCNT/nafion modified glassy carbon electrode for the electrochemical determination of caffeine. Am. J. Anal. Chem. 11(2) (2020) 114-127.
  • Kalvoda R. Adsorptive stripping voltammetry in trace analysis, in Contemporary electroanalytical chemistry. Berlin: Springer. 1990; pp. 403-405.
  • Kalvoda R. Review of adsorptive stripping voltammetry—assessment and prospects. Fresenius J. Anal. Chem. 349(8-9) (1994) 565-570.
  • Fanjul-Bolado P., Hernández-Santos D., Lamas-Ardisana P.J., Martín-Pernía A. and Costa-García A. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim. Acta. 53(10) (2008) 3635-3642.
  • Wring S.A. and Hart J.P. Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review. Analyst. 117(8) (1992) 1215-1229.
  • Bayraktepe D.E., Yazan Z. and Önal M. Sensitive and cost effective disposable composite electrode based on graphite, nano-smectite and multiwall carbon nanotubes for the simultaneous trace level detection of ascorbic acid and acetylsalicylic acid in pharmaceuticals. Talanta. 203 (2019) 131-139.
  • David I.G., Iordache L., Popa D.E., Buleandra M., David V. and Iorgulescu E.-E. Novel voltammetric investigation of dipyridamole at a disposable pencil graphite electrode. Turk J Chem. 43(4) (2019) 1109-1122.
  • Ly S.Y., Jung Y.S., Kim M.H., kwon Han I., Jung W.W. and Kim H.S. Determination of caffeine using a simple graphite pencil electrode with square-wave anodic stripping voltammetry. Microchim. Acta. 146(3-4) (2004) 207-213.
  • Özcan A., Gürbüz M., and Özcan A.A. Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly (thiophene) modified pencil graphite electrode. Talanta. 187 (2018) 125-132.
  • Dagar K. and Pundir C. An improved amperometric l-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode. Enzyme Microb. Technol. 96 (2017) 177-186.
  • Dede E., Sağlam Ö. and Dilgin Y. Sensitive voltammetric determination of niclosamide at a disposable pencil graphite electrode. Electrochim. Acta. 127 (2014) 20-26.
  • Dilgin D.G. and Karakaya S. Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater. Sci. Eng. C. 63 (2016) 570-576.
  • Kariuki J.K. An electrochemical and spectroscopic characterization of pencil graphite electrodes. . Electrochem. Soc. 159(9) (2012) 747-751.
  • Eskiköy Bayraktepe D. and Yazan Z. Application of single‐use electrode based on nano‐clay and MWCNT for simultaneous determination of acetaminophen, ascorbic acid and acetylsalicylic acid in pharmaceutical dosage. Electroanalysis. doi: 10.1002/elan.201900601.
  • Wang J., Analytical electrochemistry 3rd ed. wiley-vch hoboken. NJ. 2006
  • Chitravathi S. and Munichandraiah N. Voltammetric determination of paracetamol, tramadol and caffeine using poly (nile blue) modified glassy carbon electrode. J. Electroanal. Chem. 764(2016) 93-103.
  • Erden S., Bayraktepe D.E., Yazan Z. and Dinç E. TiO2 modified carbon paste sensor for voltammetric analysis and chemometric optimization approach of amlodipine in commercial formulation. Ionics. 22(7) (2016) 1231-1240.
  • Radi A., El-Ghany N.A. and Wahdan T. Voltammetric behaviour of rabeprazole at a glassy carbon electrode and its determination in tablet dosage form. Il Farmaco. 59(7) (2004) 515-518.
  • Ali, H. S., Abdullah, A. A., Pınar, P. T., Yardım, Y. and Şentürk, Z. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: its comparison with HPLC-DAD. Talanta. 170 (2017) 384-391.
  • Alizadeh T.,Ganjali M.R., Zare M. and Norouzi P. Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochim. Acta. 55(5) (2010) 1568-1574.
  • Yang S.,Yang R., Li G., Qu L., Li J. and Yu L. Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J. Electroanal. Chem. 639(1-2) (2010) 77-82.
  • Zhang J., Wang L., Guo W., Peng X., Li M. and Yuan Z. Sensitive differential pulse stripping voltammetry of caffeine in medicines and cola using a sensor based on multi-walled carbon nanotubes and nafion. Int. J. Electrochem. Sci. 6(4) (2011) 997-1006.
  • Sun J.-Y., Huang K.-J., Wei S.-Y., Wu Z.-W. and Ren F.-P. A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids Surf. B 84(2) (2011) 421-426.
  • Zhao F., Wang F., Zhao W., Zhou J., Liu Y., Zou L. and Ye B., Voltammetric sensor for caffeine based on a glassy carbon electrode modified with nafion and graphene oxide. Microchim. Acta. 174(3-4) (2011) 383-390.
  • Habibi B., Abazari M. and Pournaghi-Azar M.H. A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry. Chinese J. Catal. 33(11-12) (2012) 1783-1790.
  • Nunes R.S. and Cavalheiro É.T. Caffeine determination at a carbon fiber ultramicroelectrodes by fast-scan cyclic voltammetry. ‎J. Braz. Chem. Soc. 23(4) (2012) 670-677.
  • Švorc L.u., Tomčík P., Svítková J., Rievaj M. and Bustin D. Voltammetric determination of caffeine in beverage samples on bare boron-doped diamond electrode. Food chem. 135(3) (2012) 1198-1204.
  • Mersal G.A. Experimental and computational studies on the electrochemical oxidation of caffeine at pseudo carbon paste electrode and its voltammetric determination in different real samples. Food Anal. Methods. 5(3) (2012) 520-529.
  • Lezi N., Economopoulos S., Prodromidis M., Economou A. and Tagmatarchis N. Fabrication of a “green” and low-cost screen-printed graphene sensor and its application to the determination of caffeine by adsorptive stripping voltammetry. Int. J. Electrochem. Sci. 12(2017) 6054-6067.
  • Shehata M., Azab S. and Fekry A. May glutathione and graphene oxide enhance the electrochemical detection of caffeine on carbon paste sensor in aqueous and surfactant media for beverages analysis?. Synth. Met. 256 (2019) 116122.
  • Tyszczuk-Rotko K., Pietrzak K. and Sasal A. Adsorptive stripping voltammetric method for the determination of caffeine at integrated three-electrode screen-printed sensor with carbon/carbon nanofibers working electrode. Adsorption. 25(4) (2019) 913-921.
  • Fekry A., Shehata M., Azab S. and Walcarius A. Voltammetric detection of caffeine in pharmacological and beverages samples based on simple nano-co (ii, iii) oxide modified carbon paste electrode in aqueous and micellar media. Sens. Actuators B Chem. 302 (2020) 127172.
There are 46 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Burçak Zereykaya 0000-0002-2221-8401

Dilek Eskiköy Bayraktepe 0000-0001-8592-6766

Zehra Yazan 0000-0002-7511-7508

Project Number 20L0430001, 17H0430009, 13L4240009
Publication Date September 30, 2020
Submission Date May 21, 2020
Acceptance Date July 14, 2020
Published in Issue Year 2020Volume: 41 Issue: 3

Cite

APA Zereykaya, B., Eskiköy Bayraktepe, D., & Yazan, Z. (2020). An adsorptive stripping voltammetric study based on disposable pencil graphite sensor for the determination of caffeine in local brand ice tea. Cumhuriyet Science Journal, 41(3), 680-689. https://doi.org/10.17776/csj.740556