Research Article
BibTex RIS Cite

Fungus-mediated synthesis of silver nanoparticles (agnp) and inhibitory effect on aspergillus spp. in combination with antifungal agent

Year 2020, Volume: 41 Issue: 1, 311 - 318, 22.03.2020
https://doi.org/10.17776/csj.653627

Abstract

In this study, A. niger synthesized silver nanoparticules (AgNP) were characterised by using UV-Vis Sphecthrofotometry, Atomic Force Microscopy (AFM) and Transmission Electron Microscope (TEM) Analysis. The antifungal effect of synthesised AgNP and antifungal agent Amphothericin B (Amp-B) combination were investigated against Aspergillus spp. Antimicrobial efficiency were evaluated by Kirby Bauer Agar Disk Diffusion Test. In the end of this study, the particule size of AgNP which biosynthesised on A. niger were measured between 13.2-646.8 nm by AFM. The TEM analysis of AgNPs synthesized on A. niger were determined as a spherical in shape with different sizes 25.5-543.3 nm in the examined regions. The development of antifungal inhibition zone on A. niger and A. flavus was respectively carried out to evaluate on application of A. niger-AgNP; between 0-0.67 mm, 0-0.42 mm, Amp-B; 0.70-1.50 mm, 0- 0.65 mm, A. niger-AgNP+Amp-B; 1.14-2.00 mm, 0-1 mm. According to this study data, antifungal effect of were respectively determined %0.4, %1.4, %2.4; %0.1, %0.45, %0.65 on A. niger and A. flavus. The antifungal inhibition zone occurrence indicated depent of both fungi results, the Amp-B were increase %43.91 of A. niger-AgNP; A. niger-AgNP+Amp-B % 40.84 of Amp-B, A. niger-AgNP+Amp-B% 84.75 of A. niger-AgNP. The statistical evaluation of this study showed that multiple comparison of three application on A. niger and A. flavus were significant (p˂0,005).

Supporting Institution

Scientific Research Council of Sivas Cumhuriyet University

Project Number

CÜBAP M-450

Thanks

This study was supported financially by the Scientific Research Council of Sivas Cumhuriyet University (CÜBAP M-450).

References

  • [1] Durán N., Marcato P.D., De Souza G.I.H., Alves O.L., and Esposito E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechn. 3 (2005) 34-38.
  • [2] Brocchi M., Marcato P.D., De Conti R., Gonzaga A.C., Ditondo-Micas A.F., Nakasato G, Alves O.L. and Duran N.A. Comparison of silver nanoparticles produced chemically and by fungal biosynthesis conjugated to clindamycin acting on several bacteria. J Nanosci. Nanotechnol., 21 (2010) 54-61.
  • [3] CAST. Mycotoxins: Risks in plant, animal and human systems. Council for Agricultural Science and Technology. Ames, Iowa, USA (2003) 139-142.
  • [4] Wright G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug. Deliv. Rev., 57 (2005) 1451-1470.
  • [5] Wright G.D. Resisting resistance: new chemical strategies for battling superbugs. Chem. Biol., 7 (2000) 127-132.
  • [6] Sanchez E., Heredia N., Garcia S. Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int. J. Food Microbiol., 98 (2005) 271-279.
  • [7] Razzaghi-Abyaneh M., Shams G.M., Yoshinari T., Rezaee M.B., Jaimand K., Nagasawa H., Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int. J. Food Microbiol., 123 (2008) 228-233.
  • [8] Yabe K., Chihaya N., Hatabayashi H., Kito M., Hoshino S., Zeng H. Production of M-/ GM-group aflatoxins catalyzed by the OrdA enzyme in aflatoxin biosynthesis. Fungal Genet. Biol., 49 (2012) 744-754.
  • [9] Sidhu O.P., Chandra H., Behl H.M. Occurrence of aflatoxins in mahua (Madhuca indica Gmel.) seeds: synergistic effect of plant extracts on inhibition of Aspergillus flavus growth and aflatoxin production. Food Chem. Toxicol., 47 (2009) 774-777.
  • [10] Liu S., Qiu F., Kong W., Wei J., Xiao X. Yang M., Development and validation of an accurate and rapid LC-ESI-MS/MS method for the simultaneous quantification of aflatoxin B1, B2, G1 and G2 in lotus seeds. Food Control, 29 (2013) 156-161.
  • [11] Siddiqi K.S., Husen A, Rao R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology., 16(1) (2018) 14-21.
  • [12] Bragg P.D. and D. J. Rannie. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol., 20 (1974) 883-889.
  • [13] Feng Q.L., Wu J., Chen G.O., Cui F.Z., Kim T.N., and Kim J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 52 (2000) 662-668.
  • [14] Morkunas I., Woźniak A., Mai V.C., Rucińska-Sobkowiak R., Jeandet P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules. 23(9) (2018) 2320-2328.
  • [15] Nikolaos P. and Louise E. H. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J Nanomed Nanotechnol., 5 (5) (2014) 342-349.
  • [16] Sastry M., Ahmad A., Khan I., Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85 (2003)162-170.
  • [17] Castro-Longoria E., Alfredo R.V.N. and Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces, 83 (2011) 42-48.
  • [18] Honary S., Barabadi H., Gharaei-Fathabad E. and Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop. J. Phar. Res., 12 (2013) 7-11.
  • [19] Kathiresan K., Manivannan S., Nabeal M.A. and Dhivya B., Studies on silver nanoparticles synthesized by a marine fungus, Pencillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces, 20 (2009) 133-137.
  • [20] Bhimba B.V., Gurung S., Nandhini S.U., Silver nanoparticles synthesized from marine fungi Aspergillus oryzae. Int. J. Chem. Tech. Res., 7 (2015) 68-72.
  • [21] Devi L.S. and Joshi S.R. Ultra structures of silver nanoparticles biosynthesized using endophytic fungi. J. Microsc. Ultrastruct., 3 (2015) 29-37.
  • [22] Li G., He D., Qian Y., Guan B., Gao S., Cui Y., Yokoyama K., Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci., 13 (2012) 466-476.
  • [23] Abd El-Aziz, A.R., Al-Othman, M.R., Eifan, S.A., Mahmoud, M.A. and Majrashi, M. Green synthesis of silver nanoparticles using Aspergillus terreus (KC462061). Dig. J. Nanomater. Biostruct., 8 (2013) 1215-1225.
  • [24] Abdel-Hadi A.M., Awad M.F., Abo-Dahab N.F., El-Kady M.F. Extracellular synthesis of silver nanoparticles by Aspergillus terreus: biosynthesis, characterization and biological activity. Biosci. Biotechnol. Res. Asia, 11 (2014) 1179-1186.
  • [25] Kulkarni P., Rathod V., Hiremath J., Ninganagouda S., Singh D., Singh A.K., Krishnaveni R. Biosynthesis and characterization of silver nanoparticles from Aspergillus terreus and its Antibacterial Efficacy against VRSA Strains. Int. J. Eng. Res. Technol., 3 (2014) 1826-1833.
  • [26] Rathnayake W.G.I.U., Ismail H., Baharin A., Darsanasiri A.G.N.D., Rajapakse S. Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties. Polymer Testing, 31(2012) 586-592.
  • [27] Ruijgrok E.J., Fens M.H.A.M., Bakker-Woudenberg I.A.J.M., Van Etten E.W.M., Vulto A.G. Nebulized amphotericin B combined with intravenous amphotericin B in rats with severe invasive pulmonary aspergillosis. Antimicrob. Ag. Chemother., 50 (2006) 1852-1854.
  • [28] Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials Biotechnol. Adv., 27 (2009) 76-83.
  • [29] Kim K.J., Sung W.S., Moon S.K., Choi J.S., Kim J.G., Lee D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 18 (2008)1482-1484.
  • [30] Kim K.J., Sung W.S., Suh B.K., Moon S.K., Choi J.S., Kim J.G. Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals. 22 (2009) 235- 242.
  • [31] Raper K.B. and Fennell D.I. The Genus Aspergillus. Williams and Wilkins, Philadelphia, (1965) 1-686.
  • [32] Klich M.A. Identification of Common Aspergillus species. Netherlands: Centraalbureau voor Schimmelautures. (2002) 1-116.
  • [33] Basavaraja S., Balaji S., Lagashetty A., Rajasab A., Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 43 (2008) 1164-1170.
  • [34] Gautam V., Singhal L., Arora S., Jha C., Ray P. Reliability of Kirby-Bauer disk diffusion method for detecting carbapenem resistance in Acinetobacter baumanni-calcoaceticus complex isolates. Antimicrob Agents Chemother. 57(4) (2013) 2003-2004.
  • [35] Gade A., Bonde P., Ingle A., Marcato P., Duran N., Rai M. Exploitation of Aspergillus niger for synthesis of silver nanopar-ticles. Journal of Biobased Material and Bioenergy, 2 (2008) 243-247.
  • [36] Azizi S., Namvar F., Mahdavi M., Bin Ahmad M., Mohamad R. Biosynthesis of Silver Nanoparticles Using Brown Marine Macro alga, Sargassum Muticum Aqueous Extract. Materials (Basel), 6 (2013) 5942-5950.
  • [37] Al juraifani A.A.A. and Ghazwani A.A. Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. African Journal of Biotechnology, 14 (2015) 2170-2174.
  • [38] Singaravelu G., Arockiamary J. S., Ganesh Kumarb V., Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf B Biointerfaces, 57 (2007) 97-101.
  • [39] Lee Ch.J., Karim M.R., Vasudevan T., Kim H.J., Raushan K., Jung M.J., Kim D.Y., Lee M.S. A comparison method of silver nanoparticles prepared by the gamma irradiation and in situ reduction methods. Bull. Korea Chem. Soc., 31 (2010) 1993-1996.
  • [40] Gharibshahi E., Saion E. Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int. J. Mol. Sci. 13 (2012) 14723-14741.
  • [41] Fan X., Zheng W., Singh D. Light scattering and surface plasmons on small spherical particles. Light. Sci. Appl., 3 (2014) 1122-1125.
  • [42] Roh Y, Bai J.., Lauf R.J, Mcmillan A.D., Phelps T.J., Rawn C.J. Microbial synthesis of metal- substituted magnetites. Solid State Commun, 118 (2001) 529-534.
  • [43] Ingle A., Gade A., Pierrat S., Sönnichsen C., Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci., 4 (2008) 141-144.
  • [44] Anilkumar S., Abyaneh M.K., Gosavi S.W., Kulkarni S.K., Pasricha R., Ahmad A. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 29 (2007) 439-445.
  • [45] Khan N.T. and Mushtaq M. Determination of Antifungal Activity of Silver Nanoparticles Produced from Aspergillus niger. Biol. Med. (Aligarh), 9 (2016) 363-369.
  • [46] Kim K.J., Sung W.S., Suh B.K., Moon S.K., Choi J.S., Kim J.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22 (2009) 235-242.
  • [47] Monteiro D.R., Silva S., Negri M., Gorup L.F., De Camargo E.R., Oliveira R., Barbosa D.B., Henriques M. Antifungal Activity Of Silver Nanoparticles In Combination With Nystatin And Chlorhexidine Digluconate Against Candida albicans. and Candida glabrata Biofilms. Mycoses, 56 (2013) 672-680.
  • [48] Hassan S.A., Hanif E., Khan U.H., Tanoli A.K. Antifungal activity of silver nanoparticles from Aspergillus niger. Pak. J. Pharm. Sci. 32 (2019) 1163-1166.
  • [49] Noorbakhsh, F. Antifungal Effects of Silver Nanoparticle alone and with Combination of Antifungal Drug on Dermatophyte Pathogen Trichophyton Rubrum. International Conference on Bioscience, Biochemistry and Bioinformatics IPCBEE. IACSIT Press., 5 (2011) 364-367.
  • [50] Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minanian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against S. aureus and E. coli. Nanomedicine, 3 (2007) 168-171.
Year 2020, Volume: 41 Issue: 1, 311 - 318, 22.03.2020
https://doi.org/10.17776/csj.653627

Abstract

Project Number

CÜBAP M-450

References

  • [1] Durán N., Marcato P.D., De Souza G.I.H., Alves O.L., and Esposito E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechn. 3 (2005) 34-38.
  • [2] Brocchi M., Marcato P.D., De Conti R., Gonzaga A.C., Ditondo-Micas A.F., Nakasato G, Alves O.L. and Duran N.A. Comparison of silver nanoparticles produced chemically and by fungal biosynthesis conjugated to clindamycin acting on several bacteria. J Nanosci. Nanotechnol., 21 (2010) 54-61.
  • [3] CAST. Mycotoxins: Risks in plant, animal and human systems. Council for Agricultural Science and Technology. Ames, Iowa, USA (2003) 139-142.
  • [4] Wright G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug. Deliv. Rev., 57 (2005) 1451-1470.
  • [5] Wright G.D. Resisting resistance: new chemical strategies for battling superbugs. Chem. Biol., 7 (2000) 127-132.
  • [6] Sanchez E., Heredia N., Garcia S. Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int. J. Food Microbiol., 98 (2005) 271-279.
  • [7] Razzaghi-Abyaneh M., Shams G.M., Yoshinari T., Rezaee M.B., Jaimand K., Nagasawa H., Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int. J. Food Microbiol., 123 (2008) 228-233.
  • [8] Yabe K., Chihaya N., Hatabayashi H., Kito M., Hoshino S., Zeng H. Production of M-/ GM-group aflatoxins catalyzed by the OrdA enzyme in aflatoxin biosynthesis. Fungal Genet. Biol., 49 (2012) 744-754.
  • [9] Sidhu O.P., Chandra H., Behl H.M. Occurrence of aflatoxins in mahua (Madhuca indica Gmel.) seeds: synergistic effect of plant extracts on inhibition of Aspergillus flavus growth and aflatoxin production. Food Chem. Toxicol., 47 (2009) 774-777.
  • [10] Liu S., Qiu F., Kong W., Wei J., Xiao X. Yang M., Development and validation of an accurate and rapid LC-ESI-MS/MS method for the simultaneous quantification of aflatoxin B1, B2, G1 and G2 in lotus seeds. Food Control, 29 (2013) 156-161.
  • [11] Siddiqi K.S., Husen A, Rao R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology., 16(1) (2018) 14-21.
  • [12] Bragg P.D. and D. J. Rannie. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol., 20 (1974) 883-889.
  • [13] Feng Q.L., Wu J., Chen G.O., Cui F.Z., Kim T.N., and Kim J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 52 (2000) 662-668.
  • [14] Morkunas I., Woźniak A., Mai V.C., Rucińska-Sobkowiak R., Jeandet P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules. 23(9) (2018) 2320-2328.
  • [15] Nikolaos P. and Louise E. H. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J Nanomed Nanotechnol., 5 (5) (2014) 342-349.
  • [16] Sastry M., Ahmad A., Khan I., Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85 (2003)162-170.
  • [17] Castro-Longoria E., Alfredo R.V.N. and Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces, 83 (2011) 42-48.
  • [18] Honary S., Barabadi H., Gharaei-Fathabad E. and Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop. J. Phar. Res., 12 (2013) 7-11.
  • [19] Kathiresan K., Manivannan S., Nabeal M.A. and Dhivya B., Studies on silver nanoparticles synthesized by a marine fungus, Pencillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces, 20 (2009) 133-137.
  • [20] Bhimba B.V., Gurung S., Nandhini S.U., Silver nanoparticles synthesized from marine fungi Aspergillus oryzae. Int. J. Chem. Tech. Res., 7 (2015) 68-72.
  • [21] Devi L.S. and Joshi S.R. Ultra structures of silver nanoparticles biosynthesized using endophytic fungi. J. Microsc. Ultrastruct., 3 (2015) 29-37.
  • [22] Li G., He D., Qian Y., Guan B., Gao S., Cui Y., Yokoyama K., Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci., 13 (2012) 466-476.
  • [23] Abd El-Aziz, A.R., Al-Othman, M.R., Eifan, S.A., Mahmoud, M.A. and Majrashi, M. Green synthesis of silver nanoparticles using Aspergillus terreus (KC462061). Dig. J. Nanomater. Biostruct., 8 (2013) 1215-1225.
  • [24] Abdel-Hadi A.M., Awad M.F., Abo-Dahab N.F., El-Kady M.F. Extracellular synthesis of silver nanoparticles by Aspergillus terreus: biosynthesis, characterization and biological activity. Biosci. Biotechnol. Res. Asia, 11 (2014) 1179-1186.
  • [25] Kulkarni P., Rathod V., Hiremath J., Ninganagouda S., Singh D., Singh A.K., Krishnaveni R. Biosynthesis and characterization of silver nanoparticles from Aspergillus terreus and its Antibacterial Efficacy against VRSA Strains. Int. J. Eng. Res. Technol., 3 (2014) 1826-1833.
  • [26] Rathnayake W.G.I.U., Ismail H., Baharin A., Darsanasiri A.G.N.D., Rajapakse S. Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties. Polymer Testing, 31(2012) 586-592.
  • [27] Ruijgrok E.J., Fens M.H.A.M., Bakker-Woudenberg I.A.J.M., Van Etten E.W.M., Vulto A.G. Nebulized amphotericin B combined with intravenous amphotericin B in rats with severe invasive pulmonary aspergillosis. Antimicrob. Ag. Chemother., 50 (2006) 1852-1854.
  • [28] Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials Biotechnol. Adv., 27 (2009) 76-83.
  • [29] Kim K.J., Sung W.S., Moon S.K., Choi J.S., Kim J.G., Lee D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 18 (2008)1482-1484.
  • [30] Kim K.J., Sung W.S., Suh B.K., Moon S.K., Choi J.S., Kim J.G. Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals. 22 (2009) 235- 242.
  • [31] Raper K.B. and Fennell D.I. The Genus Aspergillus. Williams and Wilkins, Philadelphia, (1965) 1-686.
  • [32] Klich M.A. Identification of Common Aspergillus species. Netherlands: Centraalbureau voor Schimmelautures. (2002) 1-116.
  • [33] Basavaraja S., Balaji S., Lagashetty A., Rajasab A., Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 43 (2008) 1164-1170.
  • [34] Gautam V., Singhal L., Arora S., Jha C., Ray P. Reliability of Kirby-Bauer disk diffusion method for detecting carbapenem resistance in Acinetobacter baumanni-calcoaceticus complex isolates. Antimicrob Agents Chemother. 57(4) (2013) 2003-2004.
  • [35] Gade A., Bonde P., Ingle A., Marcato P., Duran N., Rai M. Exploitation of Aspergillus niger for synthesis of silver nanopar-ticles. Journal of Biobased Material and Bioenergy, 2 (2008) 243-247.
  • [36] Azizi S., Namvar F., Mahdavi M., Bin Ahmad M., Mohamad R. Biosynthesis of Silver Nanoparticles Using Brown Marine Macro alga, Sargassum Muticum Aqueous Extract. Materials (Basel), 6 (2013) 5942-5950.
  • [37] Al juraifani A.A.A. and Ghazwani A.A. Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. African Journal of Biotechnology, 14 (2015) 2170-2174.
  • [38] Singaravelu G., Arockiamary J. S., Ganesh Kumarb V., Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf B Biointerfaces, 57 (2007) 97-101.
  • [39] Lee Ch.J., Karim M.R., Vasudevan T., Kim H.J., Raushan K., Jung M.J., Kim D.Y., Lee M.S. A comparison method of silver nanoparticles prepared by the gamma irradiation and in situ reduction methods. Bull. Korea Chem. Soc., 31 (2010) 1993-1996.
  • [40] Gharibshahi E., Saion E. Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int. J. Mol. Sci. 13 (2012) 14723-14741.
  • [41] Fan X., Zheng W., Singh D. Light scattering and surface plasmons on small spherical particles. Light. Sci. Appl., 3 (2014) 1122-1125.
  • [42] Roh Y, Bai J.., Lauf R.J, Mcmillan A.D., Phelps T.J., Rawn C.J. Microbial synthesis of metal- substituted magnetites. Solid State Commun, 118 (2001) 529-534.
  • [43] Ingle A., Gade A., Pierrat S., Sönnichsen C., Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci., 4 (2008) 141-144.
  • [44] Anilkumar S., Abyaneh M.K., Gosavi S.W., Kulkarni S.K., Pasricha R., Ahmad A. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 29 (2007) 439-445.
  • [45] Khan N.T. and Mushtaq M. Determination of Antifungal Activity of Silver Nanoparticles Produced from Aspergillus niger. Biol. Med. (Aligarh), 9 (2016) 363-369.
  • [46] Kim K.J., Sung W.S., Suh B.K., Moon S.K., Choi J.S., Kim J.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22 (2009) 235-242.
  • [47] Monteiro D.R., Silva S., Negri M., Gorup L.F., De Camargo E.R., Oliveira R., Barbosa D.B., Henriques M. Antifungal Activity Of Silver Nanoparticles In Combination With Nystatin And Chlorhexidine Digluconate Against Candida albicans. and Candida glabrata Biofilms. Mycoses, 56 (2013) 672-680.
  • [48] Hassan S.A., Hanif E., Khan U.H., Tanoli A.K. Antifungal activity of silver nanoparticles from Aspergillus niger. Pak. J. Pharm. Sci. 32 (2019) 1163-1166.
  • [49] Noorbakhsh, F. Antifungal Effects of Silver Nanoparticle alone and with Combination of Antifungal Drug on Dermatophyte Pathogen Trichophyton Rubrum. International Conference on Bioscience, Biochemistry and Bioinformatics IPCBEE. IACSIT Press., 5 (2011) 364-367.
  • [50] Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minanian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against S. aureus and E. coli. Nanomedicine, 3 (2007) 168-171.
There are 50 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Engineering Sciences
Authors

Nevcihan Gürsoy 0000-0002-6573-0763

Project Number CÜBAP M-450
Publication Date March 22, 2020
Submission Date December 1, 2019
Acceptance Date February 3, 2020
Published in Issue Year 2020Volume: 41 Issue: 1

Cite

APA Gürsoy, N. (2020). Fungus-mediated synthesis of silver nanoparticles (agnp) and inhibitory effect on aspergillus spp. in combination with antifungal agent. Cumhuriyet Science Journal, 41(1), 311-318. https://doi.org/10.17776/csj.653627