Research Article
BibTex RIS Cite
Year 2020, Volume: 41 Issue: 1, 185 - 192, 22.03.2020
https://doi.org/10.17776/csj.642223

Abstract

Supporting Institution

Gümüşhane Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

15.F5119.02.01

References

  • [1] Kopáni M., Celec P., Danišovič L., Michalka, P. and Biró C., Oxidative stress and electron spin resonance. Clin. Chim. Acta, 364 (2006) 61-66.
  • [2] Valko M., Leibfritz D., Moncol, J., Cronin M.T.D., Mazur M. and Telser J., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B, 39(1) (2007) 44-84.
  • [3] Uttara B., Singh A.V., Zamboni P. and Mahajan R.T., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 7(1) (2009) 65-74.
  • [4] Tosun G., Arslan T., İskefiyeli Z., Küçük M., Alpay-Karaoğlu Ş. and Yaylı N., Synthesis and biological evaluation of a new series of 4-alkoxy-2-arylquinoline derivatives as potential antituberculosis agents. Turk. J. Chem., 39(4) (2015) 850-866.
  • [5] Akar B., Akar, Z., and Sahin B. Identification of antioxidant activity by different methods of a freshwater alga (Microspora sp.) collected from a high mountain lake. Hittite Sci. Eng., 6(1) (2019) 25-29.
  • [6] Huang D., Ou B. and Prior R.L., The chemistry behind antioxidant capacity assays. J. Agr.Food Chem., 53(6) (2005) 1841-1856.
  • [7] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med., 26(9-10) (1999) 1231-1237.
  • [8] Brand-Williams W., Cuvelier M.E. and Berset, C., Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1) (1995) 25-30.
  • [9] Benzie I.F., Strain J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1) (1996) 70-76.
  • [10] Apak R., Güçlü K., Özyürek M. and Karademir, S.E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agr. Food Chem., 52(26) (2004) 7970-7981.
  • [11] Slinkard K., Singleton, V.L., Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Viticult., 28(1) (1977) 49-55.
  • [12] Büyüktuncel E., Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. J. Res. Pharm., 17(2) (2013) 93-103.
  • [13] Burnaz N.A., Küçük M. and Akar Z., An on-line HPLC system for detection of antioxidant compounds in some plant extracts by comparing three different methods. J. Chromatogr. B, 1052 (2017) 66-72.
  • [14] Karaçelik A.A., Küçük M., İskefiyeli Z., Aydemir S., De Smet S., Miserez B. and Sandra P., Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chem., 175 (2015) 106-114
  • [15] Celik S.E., Ozyürek M., Güçlü K. and Apak R., Determination of antioxidants by a novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) assay with post-column detection. Anal. Chim. Acta, 674(1) (2010) 79-88.
  • [16] Raudonis R., Raudone L., Jakstas V. and Janulis V., Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries. J. Chromatogr. A, 1233 (2012) 8-15.
  • [17] Paradowska K., Polak B., Chomicki A. and Ginalska, G., Establishment of an effective TLC bioautographic method for the detection of Mycobacterium tuberculosis H37Ra phosphoglucose isomerase inhibition by phosphoenolpyruvate. J. Enzyme Inhib. Med. Chem., 31(6) (2016) 1712-1717.
  • [18] Hosu A., Cimpoiu C., Sandru M. and Seserman L., Determination of the antioxidant activity of juices by thin-layer chromatography. J. Planar Chromat., 23(1) (2010) 14-17.
  • [19] Zampini, I.C., Ordoñez, R.M. and Isla M.I., Autographic assay for the rapid detection of antioxidant capacity of liquid and semi-solid pharmaceutical formulations using ABTS•+ immobilized by gel entrapment. AAPS Pharm. Sci. Tech., 11(3) (2010) 1159-1163.
  • [20] Sirivibulkovit K., Nouanthavong S. and Sameenoi Y., Based DPPH assay for antioxidant activity analysis. Anal. Sci., 34(7) (2018) 795-800.
  • [21] Hidayat M.A., Chassana R.I., Ningsih I.Y., Yuwono M. and Kuswandi B., The CUPRAC-paper microzone plates as a simple and rapid method for total antioxidant capacity determination of plant extract. Eur. Food Res. Technol., 245 (2019) 2063-2070.
  • [22] Głód B.K., Wantusiak P.M., Piszcz, P., Lewczuk E. and Zarzycki, P.K., Application of micro-TLC to the total antioxidant potential (TAP) measurement. Food Chem., 173 (2015) 749-754.
  • [23] Olech M., Komsta Ł., Nowak R., Cieśla Ł. and Waksmundzka-Hajnos M., Investigation of antiradical activity of plant material by thin-layer chromatography with image processing. Food Chem., 132(1) (2012) 549-553.
  • [24] Akar Z., Küçük M. and Doğan H., A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J. Enzyme Inhib. Med. Chem., 32(1) (2017) 640-647.
  • [25] Akar Z., Burnaz N.A., A new colorimetric method for CUPRAC assay with using of TLC plate. LWT - Food Sci. Technol., 112 (2019) 108212.
  • [26] Pourreza N., Golmohammadi H., Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe. Talanta, 131 (2015) 136-141.
  • [27] Spiecker H., Schinker M.G., Hansen J., Park Y.I., Ebding T. and Döll W., Cell structure in tree rings: novel methods for preparation and image analysis of large cross sections. IAWA J., 21(3) (2000) 361-373.
  • [28] Sergeyeva Т.А., Gorbach L.A., Slinchenko О.А., Goncharova, L.A., Piletska, O.V., Brovko, О.О., Sergeeva L.M. and Elska, G.V., Towards development of colorimetric test-systems for phenols detection based on computationally-designed molecularly imprinted polymer membranes. Mater. Sci. Eng. C, 30(3) (2010) 431-436.
  • [29] Alkasir R.S.J., Ornatska M. and Andreescu S., Colorimetric paper bioassay for the detection of phenolic compounds, Anal. Chem., 84(22) (2012) 9729-9737.
  • [30] Vaher M., Borissova M., Seiman A., Aid T., Kolde H., Kazarjan J. and Kaljurand M., Automatic spot preparation and image processing of paper microzone-based assays for analysis of bioactive compounds in plant extracts. Food Chem., 143 (2014) 465-471.
  • [31] Arciuli, M., Palazzo, G., Gallone, A., and Mallardi, A., Bioactive paper platform for colorimetric phenols detection. Sensor. Actuat. B-Chem., 186 (2013) 557-562.
  • [32] Krylova E., Gavrilenko N., Saranchina N. and Gavrilenko M., Novel colorimetric sensor for cupric reducing antioxidant capacity (CUPRAC) measurement. Procedia Eng., 168 (2016) 355-358.
  • [33] Bener M., Şen F.B. and Apak R., Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement. Talanta, 187 (2018) 148-155.
  • [34] Zampini I.C., Ordoñez R.M. and Isla M.I., Autographic assay for the rapid detection of antioxidant capacity of liquid and semi-solid pharmaceutical formulations using ABTS•+ immobilized by gel entrapment. AAPS Pharm. Sci. Tech., 11(3) (2010) 1159-1163

Can an abts antioxidant test be performed without a spectrophotometer?

Year 2020, Volume: 41 Issue: 1, 185 - 192, 22.03.2020
https://doi.org/10.17776/csj.642223

Abstract

ABTS• + (2,2-azinobis- (3-ethylbenzothiazoline-6-sulphonic acid)) radical scavenging assay is widely used to determine the antioxidant activity of natural and synthetic substances. As other antioxidant activity determination methods, a spectrophotometer device is needed to determine the numerical value of the color formed in ABTS method. Therefore, the dependence on the device is disadvantageous due to especially the high cost and restriction of workspace. To overcome this disadvantage, a new colorimetric method in the determination of antioxidant activity for ABTS method was developed with the help of a scanner device and free software (Image J). Mixtures (plant extracts and antioxidant standards) in this new colorimetric method were prepared as in the spectrophotometric method and, after the incubation period, each of these reagent mixtures was dropped onto the thin layer chromatography (TLC) plate. Then the colors that appeared on the thin layer chromatography were transferred to the computer with the help of a scanner and CSC50 values (the color value of the antioxidant concentration required to scavenge 50% of the ABTS radical in the test solution using Image J software) were measured with free software of Image J. The same measurements were performed simultaneously on the spectrophotometer. The results of both methods were compared. There was a strong correlation between the new colorimetric method and the spectrophotometric method for ABTS. Thus, the new colorimetric method for the ABTS test has become easily applicable since no spectrophotometer device is needed and in all environments.

Project Number

15.F5119.02.01

References

  • [1] Kopáni M., Celec P., Danišovič L., Michalka, P. and Biró C., Oxidative stress and electron spin resonance. Clin. Chim. Acta, 364 (2006) 61-66.
  • [2] Valko M., Leibfritz D., Moncol, J., Cronin M.T.D., Mazur M. and Telser J., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B, 39(1) (2007) 44-84.
  • [3] Uttara B., Singh A.V., Zamboni P. and Mahajan R.T., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 7(1) (2009) 65-74.
  • [4] Tosun G., Arslan T., İskefiyeli Z., Küçük M., Alpay-Karaoğlu Ş. and Yaylı N., Synthesis and biological evaluation of a new series of 4-alkoxy-2-arylquinoline derivatives as potential antituberculosis agents. Turk. J. Chem., 39(4) (2015) 850-866.
  • [5] Akar B., Akar, Z., and Sahin B. Identification of antioxidant activity by different methods of a freshwater alga (Microspora sp.) collected from a high mountain lake. Hittite Sci. Eng., 6(1) (2019) 25-29.
  • [6] Huang D., Ou B. and Prior R.L., The chemistry behind antioxidant capacity assays. J. Agr.Food Chem., 53(6) (2005) 1841-1856.
  • [7] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med., 26(9-10) (1999) 1231-1237.
  • [8] Brand-Williams W., Cuvelier M.E. and Berset, C., Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1) (1995) 25-30.
  • [9] Benzie I.F., Strain J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1) (1996) 70-76.
  • [10] Apak R., Güçlü K., Özyürek M. and Karademir, S.E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agr. Food Chem., 52(26) (2004) 7970-7981.
  • [11] Slinkard K., Singleton, V.L., Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Viticult., 28(1) (1977) 49-55.
  • [12] Büyüktuncel E., Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. J. Res. Pharm., 17(2) (2013) 93-103.
  • [13] Burnaz N.A., Küçük M. and Akar Z., An on-line HPLC system for detection of antioxidant compounds in some plant extracts by comparing three different methods. J. Chromatogr. B, 1052 (2017) 66-72.
  • [14] Karaçelik A.A., Küçük M., İskefiyeli Z., Aydemir S., De Smet S., Miserez B. and Sandra P., Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chem., 175 (2015) 106-114
  • [15] Celik S.E., Ozyürek M., Güçlü K. and Apak R., Determination of antioxidants by a novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) assay with post-column detection. Anal. Chim. Acta, 674(1) (2010) 79-88.
  • [16] Raudonis R., Raudone L., Jakstas V. and Janulis V., Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries. J. Chromatogr. A, 1233 (2012) 8-15.
  • [17] Paradowska K., Polak B., Chomicki A. and Ginalska, G., Establishment of an effective TLC bioautographic method for the detection of Mycobacterium tuberculosis H37Ra phosphoglucose isomerase inhibition by phosphoenolpyruvate. J. Enzyme Inhib. Med. Chem., 31(6) (2016) 1712-1717.
  • [18] Hosu A., Cimpoiu C., Sandru M. and Seserman L., Determination of the antioxidant activity of juices by thin-layer chromatography. J. Planar Chromat., 23(1) (2010) 14-17.
  • [19] Zampini, I.C., Ordoñez, R.M. and Isla M.I., Autographic assay for the rapid detection of antioxidant capacity of liquid and semi-solid pharmaceutical formulations using ABTS•+ immobilized by gel entrapment. AAPS Pharm. Sci. Tech., 11(3) (2010) 1159-1163.
  • [20] Sirivibulkovit K., Nouanthavong S. and Sameenoi Y., Based DPPH assay for antioxidant activity analysis. Anal. Sci., 34(7) (2018) 795-800.
  • [21] Hidayat M.A., Chassana R.I., Ningsih I.Y., Yuwono M. and Kuswandi B., The CUPRAC-paper microzone plates as a simple and rapid method for total antioxidant capacity determination of plant extract. Eur. Food Res. Technol., 245 (2019) 2063-2070.
  • [22] Głód B.K., Wantusiak P.M., Piszcz, P., Lewczuk E. and Zarzycki, P.K., Application of micro-TLC to the total antioxidant potential (TAP) measurement. Food Chem., 173 (2015) 749-754.
  • [23] Olech M., Komsta Ł., Nowak R., Cieśla Ł. and Waksmundzka-Hajnos M., Investigation of antiradical activity of plant material by thin-layer chromatography with image processing. Food Chem., 132(1) (2012) 549-553.
  • [24] Akar Z., Küçük M. and Doğan H., A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J. Enzyme Inhib. Med. Chem., 32(1) (2017) 640-647.
  • [25] Akar Z., Burnaz N.A., A new colorimetric method for CUPRAC assay with using of TLC plate. LWT - Food Sci. Technol., 112 (2019) 108212.
  • [26] Pourreza N., Golmohammadi H., Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe. Talanta, 131 (2015) 136-141.
  • [27] Spiecker H., Schinker M.G., Hansen J., Park Y.I., Ebding T. and Döll W., Cell structure in tree rings: novel methods for preparation and image analysis of large cross sections. IAWA J., 21(3) (2000) 361-373.
  • [28] Sergeyeva Т.А., Gorbach L.A., Slinchenko О.А., Goncharova, L.A., Piletska, O.V., Brovko, О.О., Sergeeva L.M. and Elska, G.V., Towards development of colorimetric test-systems for phenols detection based on computationally-designed molecularly imprinted polymer membranes. Mater. Sci. Eng. C, 30(3) (2010) 431-436.
  • [29] Alkasir R.S.J., Ornatska M. and Andreescu S., Colorimetric paper bioassay for the detection of phenolic compounds, Anal. Chem., 84(22) (2012) 9729-9737.
  • [30] Vaher M., Borissova M., Seiman A., Aid T., Kolde H., Kazarjan J. and Kaljurand M., Automatic spot preparation and image processing of paper microzone-based assays for analysis of bioactive compounds in plant extracts. Food Chem., 143 (2014) 465-471.
  • [31] Arciuli, M., Palazzo, G., Gallone, A., and Mallardi, A., Bioactive paper platform for colorimetric phenols detection. Sensor. Actuat. B-Chem., 186 (2013) 557-562.
  • [32] Krylova E., Gavrilenko N., Saranchina N. and Gavrilenko M., Novel colorimetric sensor for cupric reducing antioxidant capacity (CUPRAC) measurement. Procedia Eng., 168 (2016) 355-358.
  • [33] Bener M., Şen F.B. and Apak R., Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement. Talanta, 187 (2018) 148-155.
  • [34] Zampini I.C., Ordoñez R.M. and Isla M.I., Autographic assay for the rapid detection of antioxidant capacity of liquid and semi-solid pharmaceutical formulations using ABTS•+ immobilized by gel entrapment. AAPS Pharm. Sci. Tech., 11(3) (2010) 1159-1163
There are 34 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Zeynep Akar 0000-0001-9262-8070

Nesibe Arslan Burnaz 0000-0003-1163-4829

Project Number 15.F5119.02.01
Publication Date March 22, 2020
Submission Date November 4, 2019
Acceptance Date January 5, 2020
Published in Issue Year 2020Volume: 41 Issue: 1

Cite

APA Akar, Z., & Arslan Burnaz, N. (2020). Can an abts antioxidant test be performed without a spectrophotometer?. Cumhuriyet Science Journal, 41(1), 185-192. https://doi.org/10.17776/csj.642223